

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

REPORT ON GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY

Prepared for

Quality Control Testing Services (QCTS)

Project Name

Proposed Subdivisional Development

Site Address

248 Woolmer Road, Highfields QLD 4352

Job Number

SGT230004

Report Number

SGT230004-R1

Report Date

4 March 2023

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

1. Introduction

Sam Geotechnics (SGT) was commissioned by Quality Control Testing Services (QCTS) to provide geotechnical investigation reporting for the proposed subdivisional development is to be located at 248 Woolmer Road, Highfields QLD 4352. The purpose of this geotechnical investigation was to provide information on subsurface ground conditions and the report presents the results of fieldwork, laboratory testing, slope stability, comments and recommendations as required by the design and construction for the proposed subdivisional development.

2. <u>Site Description and Field Work</u>

On the relevant 1:100,000 Geological map, the site plots within Eocene-Miocene Aged Olivine Basalt Volcanic Rock Formation. Fieldwork work was carried out between 14 September 2022 and 19 September 2022 and comprised drilling of thirteen (13) boreholes carried out within the site premises. Dynamic Cone Penetrometer (DCP) tests were carried out adjacent to each borehole in order to assess the strength consistency. Borehole logs are attached at the end of this report.

The subsurface ground conditions interpreted from boreholes are summarised in Table below.

Material	Borehole Point A (mbgl)	Borehole Point B (mbgl)	Borehole Point C (mbgl)	Borehole Point D (mbgl)	Borehole Point E (mbgl)
Topsoil/Grass	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
Natural: Loose to Medium Dense Sandy Silt	-	-	-	0.1-1.2	0.1-2.5
Natural: Dense Sandy Silt	-	-	-	-	2.5-3.0
Natural: Soft to Firm Sandy/Silty Clay	0.1-1.0	0.1-0.8	0.1-0.9	-	-
Natural: Stiff Sandy/Silty Clay	1.0-1.4	0.8-3.8	0.9-1.7	1.2-1.8	-
Natural: Very Stiff Sandy/Silty Clay	1.4-2.9	3.8-4.0	1.7-3.6	1.8-4.0	-
Natural: Hard Sandy/Silty Clay	2.9-4.0	-	3.6-4.0	-	3.0-4.0

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

Material	Borehole Point F (mbgl)	Borehole Point G (mbgl)	Borehole Point H (mbgl)	Borehole Point I (mbgl)	Borehole Point J (mbgl)
Topsoil/Grass	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
Natural: Loose to Medium Dense Sandy Silt	0.1-0.9	-	-	-	-
Natural: Soft to Firm Sandy/Silty Clay	-	-	-	0.1-1.0	0.1-0.8
Natural: Stiff Sandy/Silty Clay	0.9-2.0	0.1-2.2	0.1-1.0	1.0-2.0	0.8-1.3
Natural: Very Stiff Sandy/Silty Clay	2.0-4.0	2.2-3.8	1.0-1.7	2.0-3.0	1.3-2.0
Natural: Hard Sandy/Silty Clay	-	3.8-4.0	1.7-3.0	3.0-4.0	-
Natural: Very Dense Silty/Sandy Gravel	-	-			2.0-4.0
Very Low Strength Extremely Weathered (XW) Rock	-	-	3.0-3.5	-	-

Material	Borehole	Borehole	Borehole
	Point K	Point L	Point M
	(mbgl)	(mbgl)	(mbgl)
Topsoil/Grass	0.0-0.1	0.0-0.1	0.0-0.1
Natural: Soft to Firm	0104		
Sandy/Silty Clay	0.1-0.4	-	-
Natural: Stiff Sandy/Silty Clay	0.4-0.7	0.1-1.7	0.1-1.0
Natural: Very Stiff Sandy/Silty	0.7-1.0	1.7-4.0	1.0-4.0
Clay	0.7-1.0	1.7-4.0	1.0-4.0
Natural: Hard Sandy/Silty Clay	1.0-1.2*	-	-

Notes:

mbgl = metres below ground level

* = Borehole terminated due to tungsten carbide drill bit refusal in possible rock or boulders.

Groundwater table/seepage was not recorded during the testing programme. The presence of groundwater table/seepage depends on rainfall, ground conditions, permeability, adjacent creek/river/sea/canal water levels (if any exists) and differ with time.

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

3. <u>Lab Testing</u>

The following laboratory tests were carried out as part of this geotechnical investigation:

- Fifty-two (52) Natural Moisture Content Tests.
- \triangleright Twelve (12) Shrink-Swell Index (I_{ss}) Tests.
- ➤ Twelve (12) California Bearing Ratio (CBR) Tests.
- > Thirteen (13) Atterberg Limits, Moisture Content and Linear Shrinkage Tests and
- ➤ Thirteen (13) Particle Size Distribution (PSD) Tests and

Laboratory test results are summarised next to each borehole log. Test reports showing more detailed results and the methods used are attached at the end of this report.

4. Site Classification

Based on subsurface conditions encountered and considering current environmental conditions (such as trees), the site is classified as follows:

- Class 'P' Problem Site. This is due to existing trees within the site premises and natural soft to firm clayey soils were encountered within the site as per AS2870-2011.
- ➤ Class 'H1 Highly Reactive' This is due to the estimated surface movement (*Y*_s) in the order between 6 mm to 50 mm. This was based on twelve (12) Shrink Swell Index (I_{ss}) test results varies between 0.3% and 2.7%

NOTE: Highly reactive clay sites may require stiffened raft, pier and slab, pier and beam, piled method and waffle raft which may be appropriate for clad frame and masonry/articulated masonry veneer structures. Stiffened raft, pier and slab, pier and beam and piled method may be appropriate for articulated masonry structures.

The above classifications are in line with AS2870-2011 – Residential Slabs and Footings.

The effect of past and future vegetation and additional cutting and filling should be considered in the selection of a design value for differential movements.

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

The classifications above are defined based on the conditions encountered at the time of geotechnical investigation. The above site classifications are related to residential developments up to two storeys. The applicability of this classification to the present/proposed project should be confirmed by the designer.

The classification presented above is provided on the basis that the performance expectations set out in AS2870-2011 are acceptable and that site maintenance complies with the provisions of CSIRO Sheet No. 10/91, A Guide to Home Owners on Foundations Maintenance and Footing Performance, a copy of which is attached. It is important that the CSIRO documents passed on to the homeowners so that they are aware of its guidelines.

5. <u>Earthquake Site Classification</u>

Australian Standard AS 1170.4 – 2007, 'Structural Design Actions, Part 4: 'Earthquake Actions in Australia' outlines the methods for assigning the site's Sub-Soil class.

Based on the subsurface conditions encountered at the subject site, and the requirements of Australian Standard AS 1170.4 - 2007, it is recommended that the following Hazard Factor and Sub-Soil Class be adopted:

- ➤ Sub-Soil Class: Class Ce Shallow Soil Site.
- ➤ Hazard Factor (Z) for Toowoomba: 0.06.

6. <u>Drainage</u>

It is appropriate to maintain surface drainage conditions during earthworks and ensure that runoff water is discharged away from the construction area to prevent any water ponding. Generally, clayey and silty materials are susceptible to moisture changes.

It is appropriate that adequate drainage should be maintained for the life of the structure. Poor drainage will create abnormal moisture conditions within the soil profile causing adverse effects on the performance of the foundations. Stormwater, rainwater and overflow is to be properly diverted and be piped away from foundations. All drainage is to be maintained in good working condition and regular inspections and maintenance are essential.

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

7. <u>Foundation Options</u>

Geotechnical design parameters were estimated using the available borehole records, published correlations & typical values and our experience with similar materials together with the applied engineering judgement.

Given the expected foundation conditions, high level strip/pad, driven or bored pier foundations are expected to be suitable to support the proposed development. Any elements (including footings and slabs) that require support at ground level will need to be founded through natural stiff or stronger clayey soils, very dense silty/sandy gravel and/or weathered rock.

The following allowable end bearing pressures are applicable for high-level strip/pad and raft footings.

Material Type	Allowable End Bearing Pressure (kPa)
Natural: Stiff Sandy/Silty Clay	100
Natural: Very Stiff Sandy/Silty Clay	200
Natural: Hard Sandy/Silty Clay	300
Natural: Very Dense Silty/Sandy Gravel	300
Very Low Strength Extremely Weathered (XW) Rock	400

Footings proportioned in accordance with the above recommendations should have load induced settlements of no greater than about 1%-2% of the footing width.

Footings should be founded wholly in soil or rock and not partially on soil and rock to reduce potential for differential settlement.

The following allowable pile end bearing pressures and skin friction values are applicable for driven/bored piled foundations/footings.

Material Type	Allowable End Bearing Pressure (kPa)	Allowable Skin Friction (kPa)
Natural: Stiff Sandy/Silty Clay	200	30
Natural: Very Stiff Sandy/Silty Clay	400	40
Natural: Hard Sandy/Silty Clay	500	80
Natural: Very Dense Silty/Sandy Gravel	500	80
Very Low Strength Extremely Weathered (XW) Rock	600	100

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

Note: It is appropriate to ignore 1.0 m of skin friction contributions in soils. Reference can be made to AS2159-2009 for detail pile design and construction procedures.

The selection of suitable foundation option is to be at the discussion of the structural engineer.

8. <u>Piles/Retaining Wall Design Parameters</u>

The following parameters are applicable for the design of retaining structures.

Material Type	Effective Friction Angle, Φ' (⁰)	Unit Weight, γ kN/m ³	Drained Cohesion, C' (kPa)	Undrained Cohesion, Cu (kPa)
Natural: Loose to Medium Dense	24	17	1	-
Sandy Silt				
Natural: Soft to Firm Sandy/Silty	24	17	1	30
Clay				
Natural: Stiff Sandy/Silty Clay	25	19	5	50
Natural: Very Stiff Sandy/Silty Clay	26	19	7	100
Natural: Hard Sandy/Silty Clay	27	20	10	150
Natural: Dense Sandy Silt	26	19	2	-
Natural: Very Dense Silty/Sandy	32	20	-	-
Gravel				
Very Low Strength Extremely Weathered (XW) Rock	32	20	15	200

For design of retaining walls, the following points are noted:

- ➤ It is appropriate to install drainage layer for the retaining wall height and slotted drainage pipe arrangements can be installed to remove excess water into storm-water arrangement.
- ➤ It is appropriate to consider any imposed surcharges and/or lateral stress from adjacent structures, batter slopes, plant operation and any backfill should be considered within the design.
- ➤ Reference can be made to AS4678-2002 "Earth Retaining Structures" for the detail retaining wall design and construction procedures.

Sam Geotechnics Pty Ltd
PO Box 219 Capalaba QLD 4157
ABN: 88 616 366 048
Emails: samgeotechnics@gmail.com
sjeyan@samgeotechnics.com.au
Web: https://www.samgeotechnics.com.au

9. Site Inspection and Slope Stability

Based on Toowoomba Regional Council (TRC) interacting database, the site is not located within landslide/slope instability hazard mapping area. A copy of the map extract is attached to this report for further confirmation.

A site inspection was carried out by SGT on 10 January 2023. Access to the site was limited during the site inspection due to dense vegetation. Based on the site inspection, there are no indication of unstable condition within the site, evidence of up to 12⁰ slope geometry and moderate to dense vegetation were observed during the site inspection. Site photographs were taken by ASCT are presented below.

Sam Geotechnics Pty Ltd
PO Box 219 Capalaba QLD 4157
ABN: 88 616 366 048
Emails: samgeotechnics@gmail.com
sjeyan@samgeotechnics.com.au
Web: https://www.samgeotechnics.com.au

Figures 1 - 6: Typical Site Conditions During the Geotechnical Investigation.

Based on a flat to gentle sloping geometry (less than 1V:4H slope within the site), it is our opinion that the proposed subdivisional development will not be subject to landslip or subsidence or slope instability issues.

Based on the above, it is our opinion that the risk to life from geotechnical hazards is within normally accepted community standards.

If significant excavation or filling or retaining walls (generally over 1.0 m high) are to be expected within the site premises, further landslip hazard or subsidence risk or slope stability assessment/analysis are recommended and need to be carried out by a suitably qualified geotechnical engineer. QCTS is happy to assist on this regard where required.

10. Excavation Conditions

Excavations in the strata encountered within the depth of testing can be carried out using backhoes or tracked excavators. However, should excavations be required in concrete, below the depth of tungsten carbide drill bit refusal and/or in stronger rock, then provision may be allowed for the use of large excavator fitted with ripping tyne and/or rock hammer.

If bored piles be adopted as the foundation option drilling within the depth of testing should be able to be carried out using medium sized auger drilling rigs (i.e. large excavators fitted with drilling arms or small truck mounted rigs). However, depths be required below the depth of tungsten carbide dril bit refusal and/or in

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

stronger rock, then provision may be required for the use of large track/truck mounted drilling rig capable of providing significant down force and lateral restraint.

11. Safe Batters

For the strata encountered, we recommend the following safe temporary and permanent batter angles for cut and fill batters up to 3.0 m high:

Strata	Temporary	Permanent
Natural Silts and Gravels	30^{0}	18^{0}
Natural Stiff to Hard Sandy/Silty Clay and Very Low Strength		
Extremely Weathered (XW) Rock	45^{0}	27^{0}

Notes:

- ➤ Permanent batter slopes require adequate crest, toe drainages and batter slope protection against erosion.
- ➤ If steeper than recommended batters are proposed, they may require structural support or stabilisation.

 It is also appropriate to engage a suitably qualified geotechnical engineer for further advice.
- ➤ It is recommended that no surcharge loadings, including construction equipment, to be placed within distance of 3.0 m from the crest of a temporary cut/fill batter.
- ➤ Good site drainage is required in order to achieve the above angles, including the use of spoon drains etc to divert water away from the batters and to stop water cascading over the batters.

12. <u>Temporary/Permanent Excavation - Support Options</u>

The common types of supports for these types of excavation are soil nails/rock anchors with shotcrete, soldier piles with shotcrete panels and contiguous pile walls. There are many combinations of these methods available. Further advice can be obtained from a suitably qualified geotechnical/structural engineer.

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

13. <u>Earthworks, Re-Use of Site Soils, Site Preparation, Fill Construction and</u> Trafficability

All site earthworks should be carried out in accordance with AS3798-2007 'Guidelines on Earthworks for Commercial and Residential Developments'.

Prior to the placement of any structural fill across the site, any topsoil, unsuitable, deleterious and organically contaminated surface soils should be stripped to depths exposing competent ground. In addition, any tree roots remaining from any clearing operations should be completely removed.

Earthworks should be carried out in a responsible manner in accordance with the relevant parts of AS3798 – 2007. It is recommended that all earthworks be carried out under Level 1 inspection and testing arrangements as detailed in clause 8.2 of AS3798-2007.

Excluding any organic and deleterious materials, it is considered that the majority of materials won from excavation on site will generally be suitable for reuse as bulk filling provided that moisture content of the soils on placement approximates to the Optimum Moisture Content (OMC).

Where natural soils comprising medium to high plasticity clays should be preferably be excluded from the reuse as engineered fill or thoroughly mixed with the less plastic or more granular materials.

Where medium to high plasticity clays are proposed to be re-used as new structural filling materials in building or pavement areas, it is recommended that the cohesive material be placed at depth and granular material or weathered rock be placed close to the subgrade level. This will reduce the effects of seasonal moisture changes and foundations soil reactivity and improve surface trafficability.

14. <u>Construction Inspections</u>

It is appropriate that footing excavations be inspected by suitably qualified geotechnical personnel.

15. Report Limitations

This report is purely based on geotechnical investigation and laboratory testing carried out by Quality Control Testing Services (QCTS). Sam Geotechnics (SGT) doesn't take any responsible for the accuracy of the

Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

geotechnical investigation and laboratory test results. The accuracy of the geotechnical investigation and laboratory test results are subject to the responsibility of QCTS.

The statements presented in this document are intended to advise the reader of recommendations in line with stated assumptions. This report has been prepared for the particular brief given to us and the data and opinions included in this report should not be used in other contexts or for any other purpose without our prior review and agreement.

This report has been prepared for the sole use of the client for the purpose described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.

The comments given in this report and the opinions expressed herein are based on the information received from the client, the conditions encountered during the widely spaced geotechnical investigation & laboratory test results by QCTS and associated assessment of ground conditions. Ground conditions can vary over relatively short distances. However, there may be conditions prevailing at the site which have not been disclosed by the geotechnical investigation and which have not been taken into account in the report.

This report has been reasonably reviewed to eliminate human errors, inappropriateness, and omissions.

On Behalf of Sam Geotechnics Pty Ltd,

Sam Jeyan

Principal Geotechnical Engineer

RPEQ – 13339 in Civil and Geotechnical,

RPEng – 0969 in Civil

MIEAust - 3439772

Attachments:

Test Location Plan

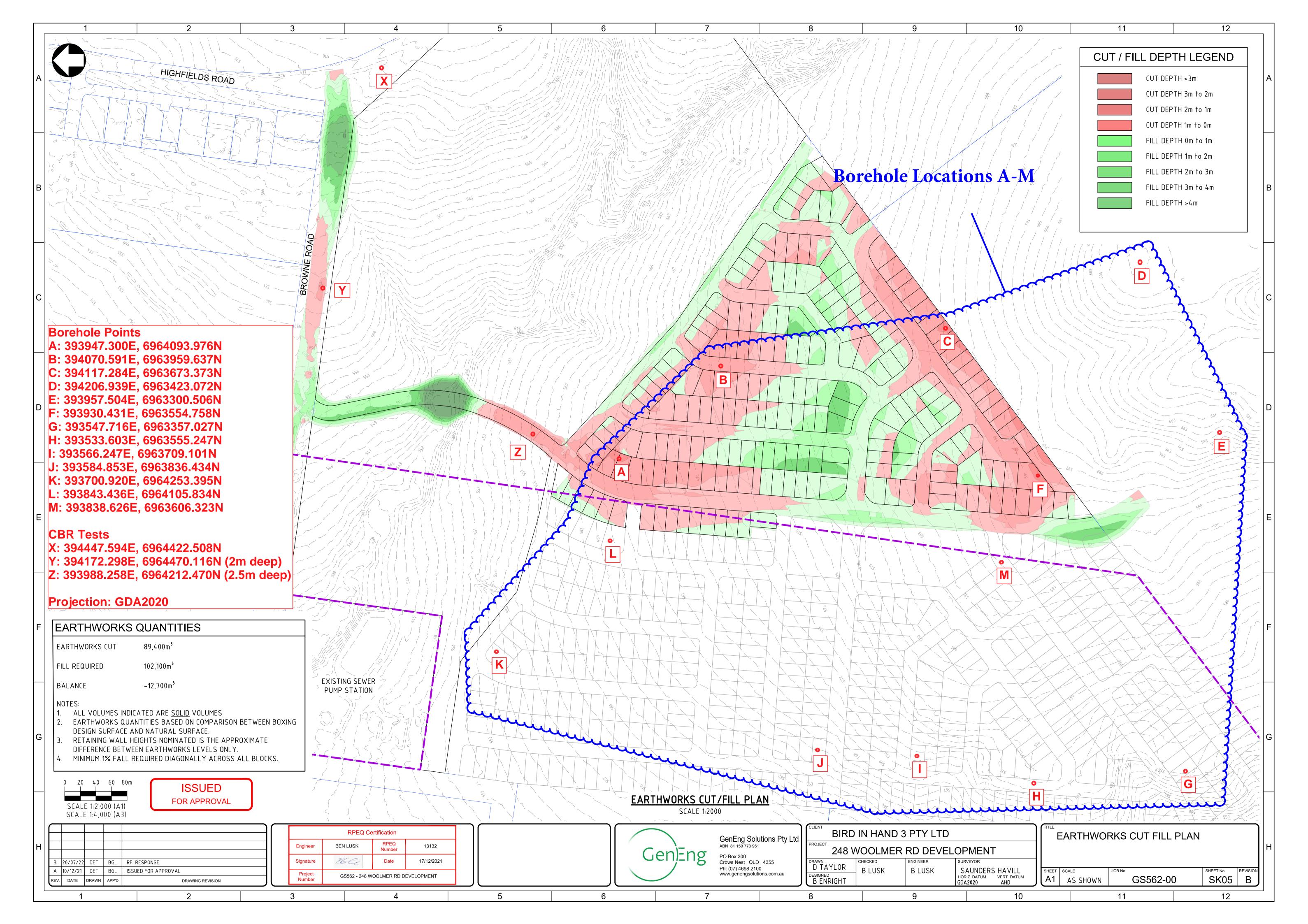
Borehole Records with Site Photos

Laboratory Test Reports

CSIRO Sheet 10/91

TRC Landslide/Slope Instability Interacting Map Extract

Report on Geotechnical Investigation and Slope Stability-248 Woolmer Rd, Highfields SGT230004-R1


Emails: samgeotechnics@gmail.com sjeyan@samgeotechnics.com.au Web: https://www.samgeotechnics.com.au

16. Reference Documents

The following published information have been referenced in this report:

- ➤ Geotechnical Site Investigations Australian Standard AS1726 2017.
- ➤ Residential Slabs & Footings Australian Standard AS2870-2011.
- ➤ Guidelines on Earthworks for Commercial and Residential Developments" by Standards Australia AS3798-2007.
- ➤ Earth-Retaining Structures by Standards Australia AS4678-2002.
- ➤ Piling—Design and Construction by Standards Australia AS2159-2009.
- ➤ Handbook of Geotechnical Investigation and Design Tables" by Taylor & Francis Group, London Burt Look (2007).

Email: info@qcts.net.au

23/8 Riverlands Drive, Loganholme 4129 Phone:

(07) 4633 0816 $www.\mathsf{qcts.net.au}$

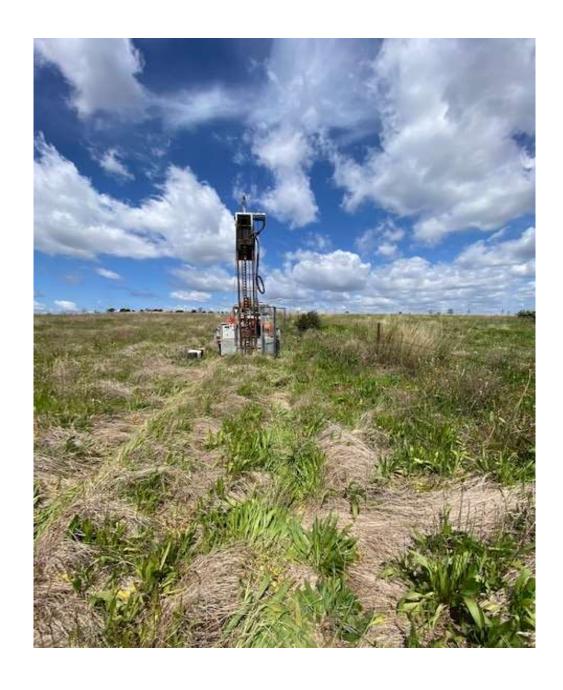
CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-1
SAMPLED BY	JDW
DATE SAMPLED	19/09/2022

MATERIAL S	Insitu				DATE S	SAMPLED	19/09	9/2022
Borehole:	Point A Location: 39394 .3	300 E, 69640	93.9 6	N				
	·	Moisture			Laboratory	Testing Summa	ary	
Depth (mm)	Material Description	Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content		
200	Sandy Silty CLAY, NATURAL (CH): soft to firm, low		1	P22-3312A	AS 1289.2.1.1	0.2-0.4	38.	.2%
300	plasticity, brown, fine to coarse sand, trace of extremely weathered fine gravel		2	P22-3312B	AS 1289.2.1.1	1.0-1.2	22.	.1%
400	extremely weathered fine graver		2	P22-3312C	AS 1289.2.1.1	2.0-2.2	18.	.3%
500			1	P22-3312D	AS 1289.2.1.1	3.0-3.2	20.	.2%
600		M w PL	2		Shrink	Swell Index		
700		" '-	2	P22-3312E	AS 1289.7.1.1	1.0	lss 2	2.6%
800			3		California	Bearing Ratio		
900			2	P22-3312F	AS 1289.6.1.1	1.0 - 1.4	10)%
1000			4		Atter	berg Limits		
1100	Sandy Silty CLAY, NATURAL (CI): stiff, low plasticity,		3	P22-3312F	AS 1289.3.1.2	1.0 - 1.4	38	3%
1200	brown, fine to coarse sand, trace of highly weathered fine to medium gravel		4	P22-3312F	AS 1289.3.2.1	1.0 - 1.4	22	2%
1300	inne to medium gravei		4	P22-3312F	AS 1289.3.3.1	1.0 - 1.4	16	5%
1400	becoming very stiff		6	P22-3312F	AS 1289.3.4.1	1.0 - 1.4	6.0	0%
1500			5		Particle S	ize Distribution		
1600			5	P22-3312F	AS 1289.3.6.1	1.0 - 1.4	AS sieve size (mm)	% pas
1700			5				19.0	100
1800			5				13.2	100
1900			6				9.5	99
2000			5				6.7	99
2100			5				4.75	97
2200			7				2.36	94
2300			6				1.18	87
2400			6				0.6	77
2500		М	5				0.425	72
2600		w ≈ PL	6				0.3	67
2700			6				0.15	60
2800			7				0.075	52
2900	becoming hard		9					
3000			9					
3100			7					
3200			9					
3300			8					
3400			8					
3500			8					
3600			9					
3700			7					
3800			7					
3900			9					
4000			9					

Email: info@qcts.net.au

23/8 Riverlands Drive, Loganholme 4129


Phone: (07) 4633 0816 www.qcts.net.au

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-2
SAMPLED BY	JDW
DATE SAMPLED	14/09/2022

200 Sandy S plasticit extreme streme				N				
0-100 TOPSOII 200 Sandy S plasticit extreme 400 500 600 700 800 900 Sandy S mottled some extreme 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 Sandy S red brow weather 2300 2400 2500 2600 2700 2800 2900 3100 Sandy S red brow weather 100 100 100 100 100 100 100 1		Moisture		Laboratory Testing Summary		iry		
200 Sandy S plasticit extreme streme	Material Description	Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults
300 plasticit extreme streme s	PSOIL/GRASS	-	-		Moist	ure Content		
400 extreme	ndy Silty CLAY, NATURAL (CH): soft to firm, high		2	P22-3313A	AS 1289.2.1.1	0.2 - 0.4	34.	2%
400 500 600 700 800 900 Sandy S mottled some exitation in the state of	asticity, red brown, fine to coarse sand, trace of tremely weathered fine gravel		1	P22-3313B	AS 1289.2.1.1	1.0 - 1.2	25.	8%
600 700 800 900 Sandy S mottled some expension of the some expensi	seniely weathered line graves	М	2	P22-3313C	AS 1289.2.1.1	2.0 - 2.2	30.	0%
700 800 900 Sandy S mottled some extended and so		w PL	1	P22-3313D	AS 1289.2.1.1	3.0 - 3.2	33.	6%
800 900 Sandy S mottled some expension of the some expension of t			2		Shrink	Swell Index	-	
900 Sandy S mottled some ex 1100 1200 1300 1400 1500 1600 1700 2000 2100 Sandy S red brow weather 2200 2200 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light red weather 3300 1000 1000 1000 1000 1000 1000 100			2	P22-3313E	AS 1289.7.1.1	1.0	Iss 2	2.7%
1000 mottled some ex 1100			2		·	Bearing Ratio		
1100 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2300 2400 2500 2600 2700 2800 2900 3100 Sandy S red browweather 2500 2600 2700 2800 2900 3100 Sandy S red browweather weather some ex	ndy Silty CLAY NATURAL (CH): stiff, high Plasticity, ottled light brown & red-brown, fine to coarse sand,		3	P22-3313F	AS 1289.6.1.1	1.0 - 1.4	2.5	5%
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 Sandy S red brow weather 2300 2400 2500 2600 2700 2800 2900 3100 Sandy S light red weather 3300	me extremely weathered fine gravel		2		ı	berg Limits	Г	
1300 1400 1500 1600 1700 1800 1900 2000 2100 Sandy S red brow weather 2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light red weather 3300	,		4	P22-3313F	AS 1289.3.1.2	1.0 - 1.4	70)%
1400 1500 1600 1700 1800 1900 2000 2100 Sandy S red brow weather 2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light red weather 3300			4	P22-3313F	AS 1289.3.2.1	1.0 - 1.4		2%
1500 1600 1700 1800 1900 2000 2100 Sandy S red browweather 2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light red weather 3300			4	P22-3313F	AS 1289.3.3.1	1.0 - 1.4		3%
1600 1700 1800 1900 2000 2100 Sandy S red browweather 2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light recoverable sections of the section of the sections of the se			3	P22-3313F	AS 1289.3.4.1	1.0 - 1.4	16.	0%
1700 1800 1900 2000 2100			4		Particle Si	ize Distribution	AS sieve size	
1800 1900 2000 2100 Sandy S red brow weather 2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light red weather 3300			6	P22-3313F	AS 1289.3.6.1	1.0 - 1.4	(mm)	% passir
1900 2000 2100 Sandy S 2200 red brow weather 2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light red weather 3300			4				9.5	100
2000 2100 Sandy S red brow weather 2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light rec weather 3300			4				6.7	99
2100 Sandy S 2200 red brow weather 2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light red weather 3300		M	5				4.75	97
2200 red browweather 2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light red weather 3300		w ≈ PL	4				2.36	92
2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light recoverable weather	ndy Silty CLAY, NATURAL (CH): stiff, high Plasticity,		4				1.18	85
2300 2400 2500 2600 2700 2800 2900 3000 3100 Sandy S light recoverable weather	d brown, fine to coarse sand, trace of highly eathered fine gravel		4				0.6	80
2500 2600 2700 2800 2900 3000 3100 Sandy S light rec weather	Ç		3				0.425	77
2600 2700 2800 2900 3000 3100 Sandy S light rec weather			3				0.3	74
2700 2800 2900 3000 3100 Sandy S ight rec weather			3				0.15	67
2800 2900 3000 3100 Sandy S 3200 light rec weather			4				0.075	59
2900 3000 3100 Sandy S 3200 light rec weather			4					
3000 3100 Sandy S 3200 light red weather			4					
3100 Sandy S 3200 light rec weather			3					
3200 light red weather	and City CLAV MATURAL (CL) (CITY)		4					
3300 weather	ndy Silty CLAY, NATURAL (CL): stiff, low plasticity, ht red brown, fine to coarse sand, trace of highly		5					
	eathered fine gravel		5					
3400 I			4					
			5					
3500		M	4					
3600		w PL	4					
3700			4					
	ecoming very stiff		5					
3900 4000			5 7					

QUALITY CONTROL TESTING SERVICES PTY LTD

ABN: 84 604 328 172

23/8 Riverlands Drive, Loganholme 4129

Phone: (07) 4633 0816 www.qcts.net.au

BORELOG REPORT

Email: info@qcts.net.au

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-3
SAMPLED BY	JDW
DATE SAMPLED	14/09/2022

Borehole:	Point C Location: 39411 .2	284 E, 6963	3.3 3	3 N				
	·	Moisture			Laboratory	Testing Summa	ary	
Depth (mm)	Material Description	Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content	-	
200	Silty CLAY, NATURAL (CH): soft to firm, high Plasticity,		1	P22-3314A	AS 1289.2.1.1	0.2 - 0.4	35.	7%
300	mottled brown & red brown, some fine to coarse		2	P22-3314B	AS 1289.2.1.1	1.0 - 1.2	29.	4%
400	sand, trace of extremely weathered fine gravel		1	P22-3314C	AS 1289.2.1.1	2.0 - 2.2	27.	7%
500			1	P22-3314D	AS 1289.2.1.1	3.0 - 3.2	29.	2%
600			2	P22-3314E	AS 1289.2.1.1	3.5 - 3.7	29.	1%
700			3			Swell Index	1	
800			2	P22-3314F	AS 1289.7.1.1	1.5	lss 1	0%
	becoming stiff		4			Bearing Ratio		
1000		М	3	P22-3314G	AS 1289.6.1.1	2.0 - 2.4	1.0	0%
1100	Silty CLAY, NATURAL (CH): stiff, high plasticity, light	w ≈ PL	3			berg Limits	1	
1200	brown, some fine to coarse sand, trace of extremely weathered fine gravel	W 1 E	5	P22-3314G	AS 1289.3.1.2	1.0 - 1.4		! %
1300	weathered fille graver		4	P22-3314G	AS 1289.3.2.1	1.0 - 1.4		3%
1400			4	P22-3314G	AS 1289.3.3.1	1.0 - 1.4		.%
1500			5	P22-3314G	AS 1289.3.4.1	1.0 - 1.4	14.	5%
1600 1700	becoming very stiff		<u>4</u> 5	P22-3314G	AS 1289.3.6.1	ize Distribution 1.0 - 1.4	AS sieve size	% passing
1800			7				(mm) 19.0	100
1900			7				13.2	99
2000			5				9.5	98
2100	Silty CLAY, NATURAL (CH): very stiff, high plasticity,		6				6.7	98
2200	light brown with trace of mottled grey, some fine to		6				4.75	97
2300	coarse sand, trace of highly weathered fine gravel		5				2.36	95
2400			6				1.18	94
2500			6				0.6	92
2600			8				0.425	91
2700			6				0.3	89
2800			7				0.15	85
2900			6				0.075	81
3000			6					
3100	Silty CLAY, NATURAL (CH): very stiff, high plasticity,	1	8					
3200	mottled grey & light brown, some fine to coarse sand,		6					
3300	trace of highly weathered fine gravel	M	7					
3400		w < PL	6					
3500			6					
3600	becoming hard		8					
3700			7					
3800			7					
3900			7					
4000			7					
4100			8					
4200			7					
4300			8					
4400			9					
4500			7					

Email: info@qcts.net.au

23/8 Riverlands Drive, Loganholme 4129 Phone: (07) 4633 0816 $www.\mathsf{qcts.net.au}$

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-4
SAMPLED BY	MDI
DATE SAMPLED	19/09/2022

MATERIAL S	Insitu				DATE S	SAMPLED	19/09	9/2022
Borehole:	Point D Location: 394206.9	939 E, 6963	123.0 2	! N				
		Moisture			Laboratory	Testing Summa	ary	
Depth (mm)	Material Description	Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content		
200	Sandy SILT, NATURAL (ML): loose to medium dense,		1	P22-3315A	AS 1289.2.1.1	0.2 - 0.4	16.	.7%
300	low plasticity, red, fine to coarse sand, trace of highly weathered fine to medium gravel		3	P22-3315B	AS 1289.2.1.1	1.0 - 1.2	27.	.9%
400	weathered line to medium graver		2	P22-3315C	AS 1289.2.1.1	2.0 - 2.2	28.	.8%
500	becoming medium dense		3	P22-3315D	AS 1289.2.1.1	3.0 - 3.2	28.	4%
600			3		Shrink	Swell Index		
700		moist	4	P22-3315E	AS 1289.7.1.1	2.5	Iss C).3%
800			4		California	a Bearing Ratio		
900			4	P22-3315F	AS 1289.6.1.1	1.0 - 1.4	11	1%
1000			3		Atter	berg Limits		
1100			4	P22-3315F	AS 1289.3.1.2	1.0 - 1.4	47	7%
1200			6	P22-3315F	AS 1289.3.2.1	1.0 - 1.4	23	3%
1300	Sandy Silty CLAY, NATURAL (CL): stiff, low plasticity,		4	P22-3315F	AS 1289.3.3.1	1.0 - 1.4	24	1%
1400	mottled brown and red, fine to coarse sand, trace of highly weathered fine gravel		4	P22-3315F	AS 1289.3.4.1	1.0 - 1.4	9.0	0%
1500	inginy weathered line graver	М	4		Particle S	ize Distribution		
1600		w ≈ PL	4	P22-3315F	AS 1289.3.6.1	1.0 - 1.4	AS sieve size (mm)	% passing
1700			6				19.0	100
1800			6				13.2	100
1900	Sandy Silty CLAY, NATURAL (CL): very stiff, low		5				9.5	99
2000	plasticity, brown, fine to coarse sand, trace of extremely weathered fine gravel		5				6.7	98
2100	grane, measure a me grane.		5				4.75	97
2200			5				2.36	92
2300			7				1.18	86
2400			7				0.6	80
2500			6				0.425	77
2600			5				0.3	75
2700			7				0.15	70
2800			7				0.075	64
2900		M	6					
3000		w PL	6					
3100	Sandy Silty CLAY, NATURAL (CL): very stiff, low Plasticity, mottled brown and red, fine to coarse sand,		5					
3200	trace of extremely weathered fine gravel		5					
3300	· · · · · ·		6					
3400			7					
3500			6					
3600			6					
3700			6					
3800			7					
3900			8					
4000			8					

Email: info@qcts.net.au

23/8 Riverlands Drive, Loganholme 4129 Phone: (07) 4633 0816

 $www.\mathsf{qcts.net.au}$

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-5
SAMPLED BY	JDW
DATE SAMPLED	15/09/2022

Borehole:	Point E Location: 3939 .	04 E, 69633	300. 06	N				
		Moisture	[Laboratory Testing Summa		ry		
Depth (mm)	Material Description	Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content		
200	Sandy SILT NATURAL (ML): medium dense, low		2	P22-3316A	AS 1289.2.1.1	0.2 - 0.4	19.	.2%
300	Plasticity, red, fine to coarse sand, some highly weathered fine to medium gravel		3	P22-3316B	AS 1289.2.1.1	1.0 - 1.2	17.	.6%
400	weathered line to medium graver		3	P22-3316C	AS 1289.2.1.1	1.5 - 1.7	21.	.3%
500			3	P22-3316D	AS 1289.2.1.1	2.0 - 2.5	25.	4%
600			2	P22-3316E	AS 1289.2.1.1	2.5 - 2.7	27.	.9%
700			4	P22-3316F	AS 1289.2.1.1	3.0 - 3.2	29.	.2%
800			4		Shrink	Swell Index		
900			5	P22-3316G	AS 1289.7.1.1	3.0	Iss C).4%
1000			5		California	a Bearing Ratio		
1100		moist	4	P22-3316H	AS 1289.6.1.1	1.0 - 1.4	16	5%
1200			6		Atteri	berg Limits		
1300			6	P22-3316H	AS 1289.3.1.2	1.0 - 1.4	44	1%
1400			5	P22-3316H	AS 1289.3.2.1	1.0 - 1.4	22	2%
1500			5	P22-3316H	AS 1289.3.3.1	1.0 - 1.4	22	2%
1600			6	P22-3316H	AS 1289.3.4.1	1.0 - 1.4	7.0	0%
1700			6		Particle Si	ize Distribution		
1800			6	P22-3316H	AS 1289.3.6.1	1.0 - 1.4	AS sieve size (mm)	% pass
1900			7				26.5	100
2000			6				19.0	100
2100	Sandy SILT NATURAL (ML): medium dense, low		5				13.2	99
2200	plasticity, red brown, fine to coarse sand, with trace of brown clay, some highly weathered fine to medium		5				9.5	98
2300	gravel ,		5				6.7	94
2400	,		8				4.75	90
2500		М	6				2.36	80
2600	Sandy SILT, NATURAL (ML): dense, low plasticity, red	w ≈ PL	7				1.18	71
2700	brown, fine to coarse sand, with trace of light brown		7				0.6	63
2800	clay, trace of highly weathered fine to medium gravel		7				0.425	60
2900			6				0.3	57
3000			7				0.15	51
3100	Sandy Silty CLAY, NATURAL (CL): hard, low plasticity,		8				0.075	46
3200	light red brown, fine to coarse sand, trace of highly		7					
3300	weathered fine to medium gravel		8					
3400			8					
3500		М	8					
3600		w PL	7					
3700			7					
3800			6					
3900			6					
4000			6					

Email: info@qcts.net.au

23/8 Riverlands Drive, Loganholme 4129 Phone: (07) 4633 0816 $www.\mathsf{qcts.net.au}$

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-6
SAMPLED BY	JDW
DATE SAMPLED	14/09/2022

Borehole:	Point F Location: 393930.	431 E, 6963	4. 8	N				
	Edution: 090900.	1	- . 0		Laboratory	Testing Summa	nrv	
Depth (mm)	Material Description	Moisture Condition	DCP	Sample No.	Test Method	Sample Depth (m)		ults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content		
200	Sandy Silty CLAY, NATURAL (CH): loose to medium		2	P22-3317A	AS 1289.2.1.1	0.2 - 0.4	31.	8%
300	dense, high plasticity, red brown, fine to coarse sand,		1	P22-3317B	AS 1289.2.1.1	1.0 - 1.2	30.	1%
400	trace of extremely weathered fine gravel		2	P22-3317C	AS 1289.2.1.1	2.0 - 2.2	31.	7%
500			2	P22-3317D	AS 1289.2.1.1	3.0 - 3.2	31.	1%
600			2		Shrink	Swell Index	•	
700			3	P22-3317E	AS 1289.7.1.1	2.5	lss 1	6%
800			2		Californic	Bearing Ratio		
900			3	P22-3317F	AS 1289.6.1.1	1.0 - 1.4	69	%
1000	Sandy Silty CLAY, NATURAL (CH): stiff, high plasticity,		3		Atter	berg Limits		
1100	brown, fine to coarse sand, trace of extremely weathered fine gravel	M w PL	4	P22-3317F	AS 1289.3.1.2	1.0 - 1.4	76	5%
1200	weathered line graver	W FL	4	P22-3317F	AS 1289.3.2.1	1.0 - 1.4	41	.%
1300			5	P22-3317F	AS 1289.3.3.1	1.0 - 1.4	35	i%
1400			4	P22-3317F	AS 1289.3.4.1	1.0 - 1.4	10.	0%
1500			5		Particle S	ize Distribution		
1600			5	P22-3317F	AS 1289.3.6.1	1.0 - 1.4	AS sieve size (mm)	% passin
1700			5				9.5	100
1800			7				6.7	99
1900			7				4.75	98
2000			6				2.36	96
2100	Sandy Silty CLAY, NATURAL (CH): very stiff, high		5				1.18	95
2200	plasticity, brown, fine to coarse sand, trace of extremely weathered fine gravel		6				0.6	93
2300	,		7				0.425	91
2400			7				0.3	90
2500			6				0.15	84
2600			6				0.075	77
2700			5					
2800			5					
2900			5					
3000		M w≈PL	6					
3100		W ≈ PL	6					
3200			5					
3300			6					
3400			7					
3500			6					
3600 3700			6					
3800			6					
3900			8 7					
4000			7					

Email: info@qcts.net.au

23/8 Riverlands Drive, Loganholme 4129

Phone: (07) 4633 0816 $www.\mathsf{qcts.net.au}$

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-7
SAMPLED BY	JDW
DATE SAMPLED	15/09/2022

Borehole:	Point G Location: 393 4 .	16 E, 6963	3 .02	N				
	,	,			Laboratory	Testing Summa	ary	
Depth (mm)	Material Description	Moisture Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content	!	
200	Sandy Silty CLAY, NATURAL (CH): stiff, high plasticity,		2	P22-3318A	AS 1289.2.1.1	0.2 - 0.4	26.	8%
300	brown, fine to coarse sand, trace of extremely		2	P22-3318B	AS 1289.2.1.1	1.0 - 1.2	31.	6%
400	weathered fine to medium gravel		3	P22-3318C	AS 1289.2.1.1	2.0 - 2.2	28.	3%
500			3	P22-3318D	AS 1289.2.1.1	3.0 - 3.2	32.	0%
600		M w < PL	4		Shrink	Swell Index	•	
700		W < FL	4	P22-3318E	AS 1289.7.1.1	2.5	lss 2	2.1%
800			3		California	Bearing Ratio	•	
900			5	P22-3318F	AS 1289.6.1.1	1.0 - 1.4	3.0	0%
1000			4		Atter	berg Limits	•	
1100	Sandy Silty CLAY, NATURAL (CH): stiff, high plasticity,		3	P22-3318F	AS 1289.3.1.2	1.0 - 1.4	80)%
1200	grey brown, fine to coarse sand, trace of extremely		3	P22-3318F	AS 1289.3.2.1	1.0 - 1.4	31	.%
1300	weathered fine to medium gravel		4	P22-3318F	AS 1289.3.3.1	1.0 - 1.4	49	9%
1400			4	P22-3318F	AS 1289.3.4.1	1.0 - 1.4	21.	0%
1500			3		Particle S	ize Distribution		
1600			4	P22-3318F	AS 1289.3.6.1	1.0 - 1.4	AS sieve size (mm)	% passing
1700			4				26.5	100
1800			4				19.0	99
1900			4				13.2	99
2000			4				9.5	99
2100			4				6.7	99
2200	becoming very stiff		5				4.75	97
2300			5				2.36	94
2400			5				1.18	90
2500		М	7				0.6	86
2600		w ≈ PL	6				0.425	83
2700			7				0.3	80
2800			7				0.15	73
2900			6				0.075	67
3000			6					
3100	Sandy Silty CLAY, NATURAL (CL): very stiff, low plasticity,		5					
3200	red brown, fine to coarse sand, trace of extremely weathered fine gravel		5					
3300			6					
3400			7					
3500			6					
3600			6					
3700			6					
3800	becoming hard		8					
3900			9					
4000			9					

QUALITY CONTROL TESTING SERVICES PTY LTD

ABN: 84 604 328 172

23/8 Riverlands Drive, Loganholme 4129

Phone: (07) 4633 0816 www.qcts.net.au

BORELOG REPORT

Email: info@qcts.net.au

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-8
SAMPLED BY	JDW
DATE SAMPLED	15/09/2022

		_			Laboratory	Testing Summa	ıry	
Depth (mm)	Material Description	Moisture Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content		
200	Sandy Silty CLAY, NATURAL (CL): stiff, low plasticity,		1	P22-3319A	AS 1289.2.1.1	0.2 - 0.4	36.	.2%
300	mottled red brown & brown, fine to coarse sand, trace of highly weathered fine gravel		3	P22-3319B	AS 1289.2.1.1	1.0 - 1.2	22.	.6%
400	or nignity weathered fine graver		2	P22-3319C	AS 1289.2.1.1	2.0 - 2.2	21.	1%
500		NA	3	P22-3319D	AS 1289.2.1.1	3.0 - 3.2	9.2	2%
600		M w PL	3		California	Bearing Ratio		
700			4	P22-3319E	AS 1289.6.1.1	1.0 - 1.4	10)%
800			3		Atter	berg Limits		
900			4	P22-3319E	AS 1289.3.1.2	1.0 - 1.4	55	5%
1000			4	P22-3319E	AS 1289.3.2.1	1.0 - 1.4	22	2%
1100	Gravelly Sandy Silty CLAY, NATURAL (CH): very stiff, high		3	P22-3319E	AS 1289.3.3.1	1.0 - 1.4	33	3%
1200	plasticity, light brown, Fine to Coarse Sand, extremely weathered fine to medium gravel		5	P22-3319E	AS 1289.3.4.1	1.0 - 1.4	13.	.0%
1300	weathered line to median grave.		7		Particle S	ize Distribution		
1400			5	P22-3319E	AS 1289.3.6.1	1.0 - 1.4	AS sieve size (mm)	% passir
1500			6		•		26.5	100
1600			6				19.0	99
1700	becoming hard		7				13.2	97
1800			6				9.5	92
1900			9				6.7	80
2000		М	11				4.75	68
2100		w ≈ PL	10				2.36	52
2200			13				1.18	46
2300			11				0.6	42
2400			14				0.425	41
2500			12				0.3	39
2600			15				0.15	36
2700			18				0.075	34
2800			26					
2900			R					
3000								
3100	Silty Sandy GRAVEL, NATURAL (GM)/Extremely							
3200	Weathered (XW) Rock: very low strength, extremely weathered fine to medium gravel, grey brown, fine to							
3300	coarse sand, low plasticity	Moist						
3400								
3500								

Email: info@qcts.net.au

23/8 Riverlands Drive, Loganholme 4129 Phone:

(07) 4633 0816 $www.\mathsf{qcts.net.au}$

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-9
SAMPLED BY	JDW
DATE SAMPLED	19/09/2022

MATERIAL S	Insitu				DATE S	SAMPLED	19/09	9/2022
Borehole:	Point I Location: 393 66.2	24 E, 6963	09.101	N				
		Moisture			Laboratory	Testing Summa	ary	
Depth (mm)	Material Description	Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content		
200	Sandy Silty CLAY, NATURAL (CH): soft to firm, high		1	P22-3320A	AS 1289.2.1.1	0.2 - 0.4	40	.6%
300	plasticity, light red brown, fine to corse sand, trace of extremely weathered fine gravel		2	P22-3320B	AS 1289.2.1.1	1.0 - 1.2	31	.2%
400	genueli eigen eine gravei		1	P22-3320C	AS 1289.2.1.1	2.0 - 2.2	29.	4%
500			3	P22-3320D	AS 1289.2.1.1	3.0 - 3.2	28.	.9%
600			1		Shrink	Swell Index		
700			2	P22-3320E	AS 1289.7.1.1	1.0	lss 2	2.1%
800			2		California	Bearing Ratio		
900			2	P22-3320F	AS 1289.6.1.1	0.2 - 0.6	2.0	0%
1000			3		Atter	berg Limits		
1100	Sandy Silty CLAY, NATURAL (CH): stiff, high plasticity,		4	P22-3320F	AS 1289.3.1.2	0.2 - 0.6	73	3%
1200	light red brown, fine to coarse sand, some highly weathered fine to medium gravel,		3	P22-3320F	AS 1289.3.2.1	0.2 - 0.6	25	5%
1300	weathered file to mediani graver,		3	P22-3320F	AS 1289.3.3.1	0.2 - 0.6	48	3%
1400			3	P22-3320F	AS 1289.3.4.1	0.2 - 0.6	18	.5%
1500			5		Particle S	ize Distribution		
1600			4	P22-3320F	AS 1289.3.6.1	0.2 - 0.6	AS sieve size (mm)	% passii
1700			4				13.2	100
1800			4				9.5	100
1900			4				6.7	99
2000		М	5				4.75	99
2100	Sandy Silty CLAY, NATURAL (CL): very stiff, low	w PL	4				2.36	98
2200	plasticity, light red brown, fine to coarse sand, with some extremely weathered fine to medium gravel		6				1.18	97
2300	some extremely weathered line to median grave.		5				0.6	94
2400			5				0.425	92
2500			6				0.3	88
2600			6				0.15	81
2700			8				0.075	76
2800			6					
2900			6					
3000			7					
3100	Sandy Silty CLAY, NATURAL (CL): hard, low		7					
3200	plasticity, grey brown, fine to coarse sand, with some extremely weathered fine to medium gravel		7					
3300	,		9					
3400			12					
3500			10					
3600			13					
3700			11					
3800			12					
3900			10					
4000			8					

23/8 Riverlands Drive, Loganholme 4129 Email: info@qcts.net.au

Phone: (07) 4633 0816 $www.\mathsf{qcts.net.au}$

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-10
SAMPLED BY	JDW
DATE SAMPLED	19/09/2022

Borehole:	Point J Location: 393 84.8	3 E, 69638	336.434	- N						
	Material Description	Moisture Condition			nry					
Depth (mm)			DCP	Sample No.	Test Method	Sample Depth (m)		ults		
0 - 100	TOPSOIL/GRASS	-	-	Moisture Content						
200	Sandy Silty CLAY, NATURAL (CH): soft to firm, high plasticity, mottled grey-yellow brown, fine to coarse sand, trace of extremely weathered fine gravel	M w PL	1	P22-3321A	AS 1289.2.1.1	0.2 - 0.4	38.2%			
300			2	P22-3321B	AS 1289.2.1.1	1.0 - 1.2	32.0%			
400			2	P22-3321C	AS 1289.2.1.1	2.0 - 2.2	21.2%			
500			1	P22-3321D	AS 1289.2.1.1	3.0 - 3.2	21.0%			
600			3		Shrink Swell Index					
700			2	P22-3321E	AS 1289.7.1.1	1.0	Iss 2.3%			
800	becoming stiff		3		California	Bearing Ratio				
900			4	P22-3321F	AS 1289.6.1.1	0.2 - 0.6	1.5%			
1000			4		Atter	berg Limits				
1100	Sandy Silty CLAY, NATURAL (CH): stiff, high plasticity,		4	P22-3321F	AS 1289.3.1.2	0.2 - 0.6	73%			
1200	brown, fine to coarse sand, some extremely weathered fine gravel		4	P22-3321F	AS 1289.3.2.1	0.2 - 0.6	25	25%		
1300	becoming very stiff		6	P22-3321F	AS 1289.3.3.1	0.2 - 0.6	48	48%		
1400			7	P22-3321F	AS 1289.3.4.1	0.2 - 0.6	18.0%			
1500			7		Particle S	ize Distribution				
1600			5	P22-3321F	AS 1289.3.6.1	0.2 - 0.6	AS sieve size (mm)	% passin		
1700			6				6.7	100		
1800			6				4.75	99		
1900			6				2.36	98		
2000			6				1.18	96		
2100	Silty Sandy GRAVEL, NATURAL (GM): very dense,		8				0.6	93		
2200	extremely weathered fine gravel, brown red brown, fine to coarse sand, low plasticityy		6				0.425	90		
2300	, , , , , , , , , , , , , , , , , , , ,		8				0.3	86		
2400			10				0.15	78		
2500			9				0.075	71		
2600			11							
2700			8							
2800			11							
2900			12							
3000		M	12							
3100		w ≈ PL	10							
3200			13							
3300			10							
3400			12							
3500			12							
3600			13							
3700			12							
3800			11							
3900 4000			9							

QUALITY CONTROL TESTING SERVICES PTY LTD

ABN: 84 604 328 172

23/8 Riverlands Drive, Loganholme 4129

Phone: (07) 4633 0816 www.qcts.net.au

QCTS QUALITY CONTROL TESTING SERVICES

BORELOG REPORT

Email: info@qcts.net.au

CLIENT	Geneng Solutions			
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields			
PROJECT	248 Woolmer Rd Development, Highfields			
MATERIAL SOURCE	Insitu			

JOB No.	P22253
REPORT No.	P22253-11
SAMPLED BY	JDW
DATE SAMPLED	15/09/2022

MATERIAL S	SOURCE Insitu				DATE S	AMPLED	15/09	9/2022		
Borehole: Point Location: 393 00.920 E, 69642 3.39 N										
	I Moisture II						esting Summary			
Depth (mm)	Material Description	Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults		
0 - 100	TOPSOIL/GRASS	-	-	Moisture Content						
200	Silty CLAY, NATURAL (CH): soft to firm, high plasticity,		2	P22-3322A	AS 1289.2.1.1	0.2 - 0.4	36	4%		
300	yellow brown & red, some fine to coarse sand, trace of		1		Shrink	Shrink Swell Index				
400	moderately weathered fine gravel becoming stiff		4	P22-3322B	AS 1289.7.1.1	0.7.1.1 1.0 Iss 1.6%				
500	becoming sun		3	Atterberg Limits						
600			3	P22-3322C	AS 1289.3.1.2	0.2 - 0.6	70)%		
700	becoming very stiff	M w PL	6	P22-3322C	AS 1289.3.2.1	0.2 - 0.6	26	5%		
800		W PL	8	P22-3322C	AS 1289.3.3.1	0.2 - 0.6	44	1%		
900			7	P22-3322C	AS 1289.3.4.1	0.2 - 0.6	17.	0%		
1000	becoming hard		10		Particle Si	ize Distribution				
1100			19	P22-3322C	AS 1289.3.6.1	0.2 - 0.6	AS sieve size (mm)	% passing		
1200			R				19.0	100		
1300	Power Auger refusal at 1.2m						13.2	99		
1400	in possible weathered rock						9.5	98		
1500							6.7	96		
1600							4.75	95		
1700							2.36	92		
1800							1.18	89		
1900							0.6	87		
2000							0.425	86		
2100							0.3	85		
2200							0.15	83		
2300							0.075	81		
2400										
2500										
2600										
2700										
2800										
2900										
3000										
3100										
3200										
3300	-									
3400										
3500	-									
3600			<u> </u>							
3700	1		 							
3800	-									
3900	1									
4000										

QUALITY CONTROL TESTING SERVICES PTY LTD ABN: 84 604 328 172 23/8 Riverlands Drive, Loganholme 4129

Phone: (07) 4633 0816 $www.\mathsf{qcts.net.au}$

BORELOG REPORT

Email: info@qcts.net.au

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-12
SAMPLED BY	JDW
DATE SAMPLED	15/09/2022

Borehole:	Point L Location: 393843.4	36 E, 6964	10 .834	. N				
	12000000				Laboratory	Testing Summa	ary	
Depth (mm)	Material Description	Moisture Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	ults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content		
200	Sandy Silty CLAY, NATURAL (CH): stiff, high plasticity, red		2	P22-3323A	AS 1289.2.1.1	0.2 - 0.4	34.	9%
300	brown, fine to coarse sand, trace of extremely weathered fine gravel		3	P22-3323B	AS 1289.2.1.1	1.0 - 1.2	35.	9%
400	ille graver		2	P22-3323C	AS 1289.2.1.1	2.0 - 2.2	35.	8%
500			2	P22-3323D	AS 1289.2.1.1	3.0 - 3.2	35.	2%
600			4		Shrink	Swell Index		
700			3	P22-3323E	AS 1289.7.1.1	2.0	lss 1	3%
800			4		California	Bearing Ratio		
900			3	P22-3323F	AS 1289.6.1.1	2.0 - 2.4	2.5	5%
1000			3		Atteri	berg Limits		
1100			5	P22-3323F	AS 1289.3.1.2	2.0 - 2.4	77	' %
1200			4	P22-3323F	AS 1289.3.2.1	2.0 - 2.4	25	%
1300			4	P22-3323F	AS 1289.3.3.1	2.0 - 2.4	52	!%
1400			4	P22-3323F	AS 1289.3.4.1	2.0 - 2.4	18.	5%
1500			5		Particle Si	ize Distribution		
1600			4	P22-3323F	AS 1289.3.6.1	2.0 - 2.4	AS sieve size (mm)	% passing
1700	becoming very stiff		5				6.7	100
1800			5				4.75	100
1900			7				2.36	99
2000		М	5				1.18	98
2100	Sandy Silty CLAY, NATURAL (CH): very stiff, High	w PL	6				0.6	97
2200	plasticity, mottled grey & red brown, fine to coarse sand, trace of extremely weathered fine gravel		7				0.425	95
2300	alase of entremely measurered line grave.		6				0.3	92
2400			6				0.15	86
2500			5				0.075	79
2600			6					
2700			7					
2800			7					
2900			6					
3000			5					
3100			5					
3200			5					
3300			5					
3400			6					
3500			5					
3600			5					
3700			7					
3800			6					
3900 4000			5 4					

Site Photos

ABN: 84 604 328 172

Email: info@qcts.net.au

23/8 Riverlands Drive, Loganholme 4129

Phone: (07) 4633 0816 $www.\mathsf{qcts.net.au}$

BORELOG REPORT

CLIENT	Geneng Solutions
CLIENT'S ADDRESS	2/10486 New England Highway, Highfields
PROJECT	248 Woolmer Rd Development, Highfields
MATERIAL SOURCE	Insitu

JOB No.	P22253
REPORT No.	P22253-13
SAMPLED BY	MDI
DATE SAMPLED	15/09/2022

MATERIAL S	OURCE				DATE S	AMPLED	15/09	9/2022
Borehole:	Point M Location: 393838.6	326 E, 6963	606.323	N				
		NA - i-t			Laboratory	Testing Summa	ary	
Depth (mm)	Material Description	Moisture Condition	DCP	Sample No.	Test Method	Sample Depth (m)	Res	sults
0 - 100	TOPSOIL/GRASS	-	-		Moist	ure Content		
200	Silty CLAY, NATURAL (CH): stiff, highy plasticity, mottled		2	P22-3324A	AS 1289.2.1.1	0.2 - 0.4	24.	.7%
300	grey-red & red-brown, some fine to coarse sand, trace		3	P22-3324B	AS 1289.2.1.1	1.0 - 1.2	32.	.3%
400	of extremely weathered fine gravel		3	P22-3324C	AS 1289.2.1.1	2.0 - 2.2	30.	.3%
500			3	P22-3324D	AS 1289.2.1.1	3.0 - 3.2	30.	.1%
600		M w < PL	4		Shrink	Swell Index		
700		WYFL	4	P22-3324E	AS 1289.7.1.1	2.0	lss 2	2.5%
800			4		California	Bearing Ratio	•	
900			6	P22-3324F	AS 1289.6.1.1	1.0 - 1.4	1.5	5%
1000			5		Atter	berg Limits		
1100	Silty CLAY, NATURAL (CH): very stiff, high plasticity,		6	P22-3324F	AS 1289.3.1.2	1.0 - 1.4	96	6%
1200	mottled grey & light brown, some fine to coarse sand,		5	P22-3324F	AS 1289.3.2.1	1.0 - 1.4	32	2%
1300	some extremely weathered fine to medium gravel		5	P22-3324F	AS 1289.3.3.1	1.0 - 1.4	64	4%
1400			5	P22-3324F	AS 1289.3.4.1	1.0 - 1.4	16.	.0%
1500			6		Particle S	ize Distribution		
1600			7	P22-3324F	AS 1289.3.6.1	1.0 - 1.4	AS sieve size (mm)	% passing
1700			6				19.0	100
1800			7				13.2	98
1900			7				9.5	97
2000			6				6.7	94
2100	Silty CLAY, NATURAL (CH): very stiff, high plasticity,		6				4.75	92
2200	mottled grey & light red-brown, some fine to coarse sand, some extremely weathered fine to medium gravel		5				2.36	90
2300	gana, some externet, measureres me te measuring.		6				1.18	88
2400			6				0.6	87
2500		M	6				0.425	86
2600		w ≈ PL	5				0.3	85
2700			6				0.15	82
2800			8				0.075	80
2900			7					
3000			5					
3100			6					
3200			6					
3300			5					
3400			5					
3500			5					
3600 3700			6					
3800			5					
3900			5					
4000			5					
4000			6					

Report Number: P22253-1B

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor

Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3312

 Sample Number:
 P22-3312F

 Client Sample #:
 A

 Date Sampled:
 19/09/2022

Dates Tested: 26/09/2022 - 08/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point A E: 393947.300, N: 6964093.976, Depth: 1.0 - 1.4

Material: Natural
Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

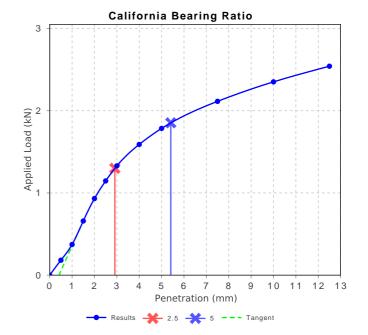
4 Stradbroke Street Rockville QLD 4350

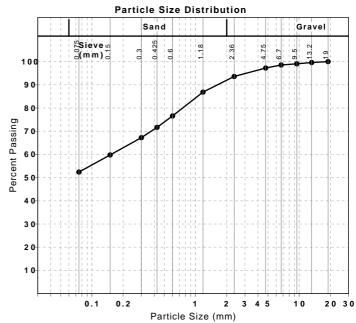
Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman


Technical Services Manager


NATA Accredited Laboratory Number: 19673

California Bearing Ratio (AS 1289 6.1.1 &	Min	Max	
CBR taken at	2.5 mm		
CBR %	10		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.68		
Optimum Moisture Content (%)	20.5		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	101.5		
Dry Density after Soaking (t/m ³)	1.61		
Field Moisture Content (%)	20.9		
Moisture Content at Placement (%)	20.6		
Moisture Content Top 30mm (%)	28.5		
Moisture Content Rest of Sample (%)	25.5		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	96.1		
Swell (%)	1.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size Distribution (AS1289 3.6.1)								
Sieve	Passed %	Passin Limits					Retain Limits	ed
19 mm	100			0				
13.2 mm	100			0				
9.5 mm	99			1				
6.7 mm	99			1				
4.75 mm	97			1				
2.36 mm	94			4				
1.18 mm	87			7				
0.6 mm	77			10				
0.425 mm	72			5				
0.3 mm	67			4				
0.15 mm	60			7				
0.075 mm	52			7				

Report Number: P22253-1B

Report Number: P22253-1B

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3312

 Sample Number:
 P22-3312F

 Client Sample #:
 A

Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 08/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point A E: 393947.300, N: 6964093.976, Depth: 1.0 - 1.4

Material: Natural Material Source: Insitu

Atterberg Limit (AS1289 3.1.2 & 3.2	Min	Max		
Sample History	ple History Oven Dried			
Preparation Method	Dry Sieve			
Liquid Limit (%)	38			
Plastic Limit (%)	22			
Plasticity Index (%)				

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	6.0		
Cracking Crumbling Curling	Cracking & Curling		

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager NATA Accredited Laboratory Number: 19673

Report Number: P22253-1B

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3312

Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Selected by Client A

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA

WORLD RECOGNISED

ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Moisture Content A	S 1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
P22-3312A	Borehole Point A E: 393947.300, N: 6964093.976, Depth: 0.2 - 0.4	38.2 %	Natural
P22-3312B	Borehole Point A E: 393947.300, N: 6964093.976, Depth: 1.0 - 1.2	22.1 %	Natural
P22-3312C	Borehole Point A E: 393947.300, N: 6964093.976, Depth: 2.0 - 2.2	18.3 %	Natural
P22-3312D	Borehole Point A E: 393947.300, N: 6964093.976, Depth: 3.0 - 3.2	20.2 %	Natural

Report Number: P22253-1B

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor

Project Number: P22253
Project Name: 248 Woolmer Road Development

Project Name: 248 Woolmer Road Development Browne & Woolmer Rd, Highfields

 Work Request:
 3312

 Date Sampled:
 19/09/2022

Dates Tested: 26/09/2022 - 27/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point A

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

material Source.			
Shrink Swell Index AS 1289 7.1.1 & 2.1	.1		
Sample Number	P22-3312E		
Date Sampled	19/09/2022		
Date Tested	27/09/2022		
Material Source	insitu		
Sample Location	Borehole Point A E: 393947.300, N: 6964093.976 (1000)		
Inert Material Estimate (%)	20		
Pocket Penetrometer before (kPa)	40		
Pocket Penetrometer after (kPa)	30		
Shrinkage Moisture Content (%)	30.6		
Shrinkage (%)	4.5		
Swell Moisture Content Before (%)	40.7		
Swell Moisture Content After (%)	44.7		
Swell (%)	0.4		
Shrink Swell Index Iss (%)	2.6		
Visual Description	mottled orange weathered gravel and brown Silty clay		
Cracking	MC		
Crumbling	Yes		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Report Number: P22253-2B

Issue Number: 2 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3313

 Sample Number:
 P22-3313F

 Client Sample #:
 B

 Date Sampled:
 14/09/2022

Dates Tested: 26/09/2022 - 08/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point B E: 394070.591, N: 6963959.637, Depth: 1.0 - 1.4

Material: Natura
Material Source: Insitu

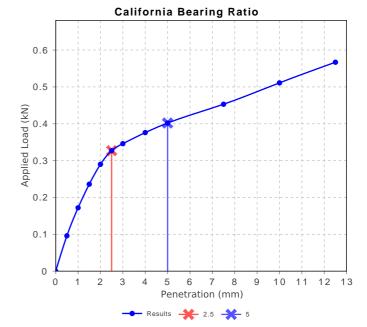
Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au


Accredited for compliance with ISO/IEC 17025 - Testing


Approved Signatory: Mark Jackman

Technical Services Manager

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	2.5		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & :	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.44		
Optimum Moisture Content (%)	31.5		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	99.5		
Dry Density after Soaking (t/m ³)	1.35		
Field Moisture Content (%)	30.6		
Moisture Content at Placement (%)	31.3		
Moisture Content Top 30mm (%)	45.5		
Moisture Content Rest of Sample (%)	36.6		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	123.2		
Swell (%)	3.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size Distribution (AS1289 3.6.1)						
Sieve	Passed %	Passin Limits	g	Retained %	Retain Limits	ed
19 mm	100			0		
13.2 mm	100			0		
9.5 mm	100			0		
6.7 mm	99			1		
4.75 mm	97			2		
2.36 mm	92			6		
1.18 mm	85			6		
0.6 mm	80			5		
0.425 mm	77			3		
0.3 mm	74			3		
0.15 mm	67			7		
0.075 mm	59			7		

Report Number: P22253-2B

Issue Number: 2 - This version supersedes all previous issues

Description Amended Reissue Reason:

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: **David Taylor Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3313 Sample Number: P22-3313F Client Sample #: В

Date Sampled: 14/09/2022 Dates Tested: 26/09/2022 - 08/10/2022

Sampling Method:

AS 1289.1.2.1 6.5.3 - Power auger drilling AS 1289.1.1 - Sampling and preparation of soils **Preparation Method:**

Site Selection: Selected by Client

Sample Location: Borehole Point B E: 394070.591, N: 6963959.637, Depth: 1.0 - 1.4

Material: Natural Material Source: Insitu

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	70		
Plastic Limit (%)	32		
Plasticity Index (%) 38			

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	16.0		
Cracking Crumbling Curling	Cracking &	Curlina	

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman

Technical Services Manager NATA Accredited Laboratory Number: 19673

Report Number: P22253-2B

Issue Number: 2 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3313

Date Sampled: 14/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point B

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Moisture Content AS 1289 2.1.1					
Sample Number	Sample Location	Moisture Content	Material		
P22-3313A	Borehole Point B Ch: 394070.591m, Off: 6963959.637m, Depth: 0.2 - 1.0	34.2 %	Natural		
P22-3313B	Borehole Point B Ch: 394070.591m, Off: 6963959.637m, Depth: 1.0 - 1.2	25.8 %	Natural		
P22-3313C	Borehole Point B Ch: 394070.591m, Off: 6963959.637m, Depth: 2.0 - 2.2	30.0 %	Natural		
P22-3313D	Borehole Point B Ch: 394070.591m, Off: 6963959.637m, Depth: 3.0 - 3.2	33.6 %	Natural		

Report Number: P22253-2B

Issue Number: 2 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: P22253

Project Number: **Project Name:** 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3313 Date Sampled: 14/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Borehole Point B Location:

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman Technical Services Manager

NATA Accredited Laboratory Number: 19673

Shrink Swell Index AS 1289 7.1.1 & 2.1	.1		
Sample Number	P22-3313E		
Date Sampled	14/09/2022		
Date Tested	28/09/2022		
Material Source	insitu		
Sample Location	Borehole Point B (1000)		
Inert Material Estimate (%)	10		
Pocket Penetrometer before (kPa)	130		
Pocket Penetrometer after (kPa)	60		
Shrinkage Moisture Content (%)	25.6		
Shrinkage (%)	2.3		
Swell Moisture Content Before (%)	30.7		
Swell Moisture Content After (%)	34.5		
Swell (%)	5.0		
Shrink Swell Index Iss (%)	2.7		
Visual Description	grey-red/brown silty clay with some fine gravel		
Cracking	SC		
Crumbling	No		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Report Number: P22253-3C

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: **Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3314 Sample Number: P22-3314G Client Sample #: С Date Sampled: 14/09/2022

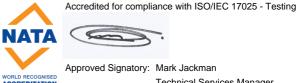
Dates Tested: 26/09/2022 - 10/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point C E: 394117.284, N: 6963673.373, Depth: 1.0 - 1.4

Material: Natural **Material Source:** Insitu


Quality Control Testing Services Pty Ltd

QCTS Toowoomba

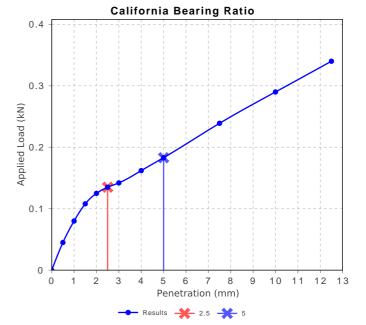
4 Stradbroke Street Rockville QLD 4350

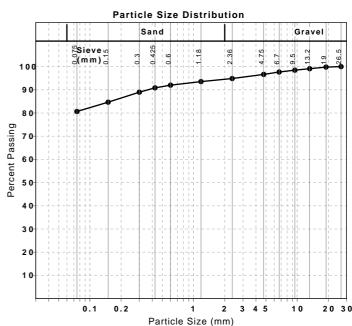
Phone: (07) 4633 0816

Email: mark@qcts.net.au

Approved Signatory: Mark Jackman **Technical Services Manager**

NATA Accredited Laboratory Number: 19673


NATA	
WORLD RECOGNISED ACCREDITATION	


California Bearing Ratio (AS 1289 6.1.1 & 2	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	1.0		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5.	1.1 & 2	2.1.1
Method used to Determine Plasticity	Visu	ally	
Maximum Dry Density (t/m ³)	1.51		
Optimum Moisture Content (%)	28.5		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	100.0		
Dry Density after Soaking (t/m ³)	1.39		
Field Moisture Content (%)	28.9		
Moisture Content at Placement (%)	28.5		
Moisture Content Top 30mm (%)	42.1		
Moisture Content Rest of Sample (%)	34.7		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	122.5		
Swell (%)	6.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Moisture Content (AS1289.2.1.1)		Min	Max
Moisture Content (%)	28.9		

Report Number: P22253-3C

Report Number: P22253-3C

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3314

 Sample Number:
 P22-3314G

 Client Sample #:
 C

Date Sampled: 14/09/2022

 Dates Tested:
 26/09/2022 - 10/10/2022

 Sampling Method:
 AS 1289.1.2.1 6.5.3 - Power auger drilling

Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point C E: 394117.284, N: 6963673.373, Depth: 1.0 - 1.4

Material: Natural Material Source: Insitu

Report Number: P22253-3C

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	94		
Plastic Limit (%)	43		
Plasticity Index (%) 51			

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		_
Linear Shrinkage (%)	14.5		
Cracking Crumbling Curling	None		

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Report Number: P22253-3C

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor **Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3314 Date Sampled: 14/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point C

Material: Natural **Material Source:** Insitu

Report Number: P22253-3C

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Technical Services Manager

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA**

WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman

Moisture Content A	Moisture Content AS 1289 2.1.1					
Sample Number	Sample Location	Moisture Content	Material			
P22-3314A	Borehole Point C E: 394117.284, N: 6963673.373, Depth: 0.2 - 0.4	35.7 %	Natural			
P22-3314B	Borehole Point C E: 394117.284, N: 6963673.373, Depth: 1.0 - 1.2	29.4 %	Natural			
P22-3314C	Borehole Point C E: 394117.284, N: 6963673.373, Depth: 2.0 - 2.2	27.7 %	Natural			
P22-3314D	Borehole Point C E: 394117.284, N: 6963673.373, Depth: 3.0 - 3.2	29.2 %	Natural			
P22-3314E	Borehole Point C E: 394117.284, N: 6963673.373, Depth: 3.5 - 3.7	29.1 %	Natural			

Report Number: P22253-3C

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor

Project Number: P22253

Project Name: 248 Woolmer Road Development Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3314 **Date Sampled:** 14/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point C

Material: Natural Material Source: Insitu

Report Number: P22253-3C

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

Shrink Swell Index AS 1289 7.1.1 & 2.1.	1		
Sample Number	P22-3314F		
Date Sampled	14/09/2022		
Date Tested	28/09/2022		
Material Source	insitu		
Sample Location	Borehole Point C E: 394117.284, N: 6963673.373 (1.5)		
Inert Material Estimate (%)	5		
Pocket Penetrometer before (kPa)	100		
Pocket Penetrometer after (kPa)	40		
Shrinkage Moisture Content (%)	29.6		
Shrinkage (%)	1.6		
Swell Moisture Content Before (%)	31.0		
Swell Moisture Content After (%)	32.3		
Swell (%)	0.5		
Shrink Swell Index Iss (%)	1.0		
Visual Description	mottled yellow/brown & red/brown silty clay with some weathered gravel		
Cracking	MC		
Crumbling	No		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Report Number: P22253-4C

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: **Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3315 Sample Number: P22-3315F Client Sample #: D Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 10/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point D E: 394206.939, N: 6963423.072, Depth: 1.0 - 1.4

Material: **Material Source:** Insitu

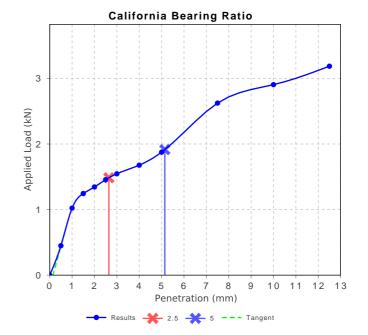
Quality Control Testing Services Pty Ltd

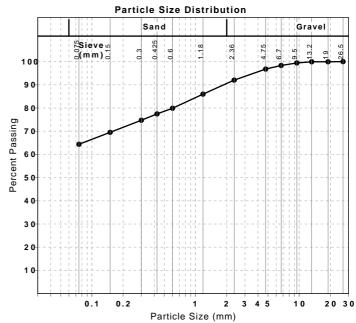
QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au




Approved Signatory: Mark Jackman

Technical Services Manager

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	11		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.61		
Optimum Moisture Content (%)	26.0		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	99.0		
Dry Density after Soaking (t/m³)	1.56		
Field Moisture Content (%)	28.1		
Moisture Content at Placement (%)	25.6		
Moisture Content Top 30mm (%)	28.8		
Moisture Content Rest of Sample (%)	26.0		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	123.6		
Swell (%)	0.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size Distribution (AS1289 3.6.1)						
Sieve	Passed %	Passin Limits	g	Retained %	Retain Limits	ed
26.5 mm	100			0		
19 mm	100			0		
13.2 mm	100			0		
9.5 mm	99			1		
6.7 mm	98			1		
4.75 mm	97			2		
2.36 mm	92			5		
1.18 mm	86			6		
0.6 mm	80			6		
0.425 mm	77			2		
0.3 mm	75			3		
0.15 mm	70			5		
0.075 mm	64			5		

Report Number: P22253-4C

Issue Number: 3 - This version supersedes all previous issues

Description Amended Reissue Reason:

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: **David Taylor Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3315 Sample Number: P22-3315F Client Sample #: D Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 10/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling AS 1289.1.1 - Sampling and preparation of soils **Preparation Method:**

Site Selection: Selected by Client

Sample Location: Borehole Point D E: 394206.939, N: 6963423.072, Depth: 1.0 - 1.4

Material: Natural Material Source: Insitu

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History Oven Dried			
Preparation Method	Dry Sieve		
Liquid Limit (%)	47		
Plastic Limit (%)	23		
Plasticity Index (%) 24			

Linear Shrinkage (AS1289 3.4.1)			Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	9.0		
Cracking Crumbling Curling	None		

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman Technical Services Manager

Report Number: P22253-4C

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3315

Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point D

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Moisture Content AS 1289 2.1.1				
Sample Number	Sample Location	Moisture Content	Material	
P22-3315A	Borehole Point D Ch: 394206.939m, Off: 6963423.072m, Depth: 0.2 - 0.4	16.7 %	Natural	
P22-3315B	Borehole Point D Ch: 394206.939m, Off: 6963423.072m, Depth: 1.0 - 1.2	27.9 %	Natural	
P22-3315C	Borehole Point D Ch: 394206.939m, Off: 6963423.072m, Depth: 2.0 - 2.2	28.8 %	Natural	
P22-3315D	Borehole Point D Ch: 394206.939m, Off: 6963423.072m, Depth: 3.0 - 3.2	28.4 %	Natural	

Report Number: P22253-4C

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3315 Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 29/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point D

Material: Natural **Material Source:** Insitu

Report Number: P22253-4C

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

material Source.			
Shrink Swell Index AS 1289 7.1.1 & 2.1	.1		
Sample Number	P22-3315E		
Date Sampled	19/09/2022		
Date Tested	29/09/2022		
Material Source	insitu		
Sample Location	Borehole Point D E: 394206.939, N: 6963423.072 (2.5)		
Inert Material Estimate (%)	15		
Pocket Penetrometer before (kPa)	60		
Pocket Penetrometer after (kPa)	40		
Shrinkage Moisture Content (%)	31.5		
Shrinkage (%)	0.6		
Swell Moisture Content Before (%)	32.3		
Swell Moisture Content After (%)	34.8		
Swell (%)	-0.0		
Shrink Swell Index Iss (%)	0.3		
Visual Description	yellow-red/brown silty clay with some weathered gravel		
Cracking	SC		
Crumbling	No		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Report Number: P22253-5A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: **Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3316 Sample Number: P22-3316H Client Sample #: Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point E E: 393957.504, N: 6963300.506, Depth: 1.0 - 1.4

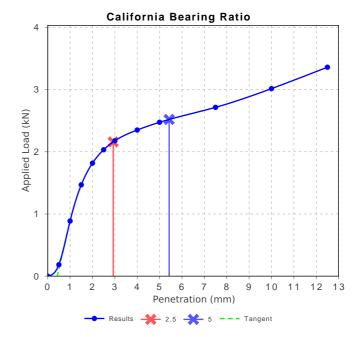
Material: **Material Source:** Insitu

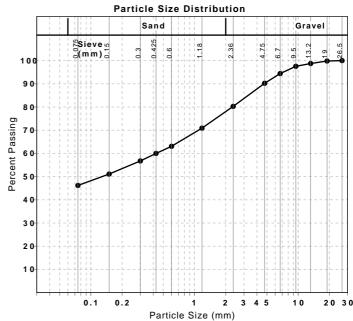
Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816


Email: mark@qcts.net.au


Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman Technical Services Manager

	2.4.4		
California Bearing Ratio (AS 1289 6.1.1 & 2	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	16		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & :	2.1.1
Method used to Determine Plasticity	Visu	ually	
Maximum Dry Density (t/m ³)	1.66		
Optimum Moisture Content (%)	24.0		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	100.0		
Dry Density after Soaking (t/m³)	1.61		
Field Moisture Content (%)	26.6		
Moisture Content at Placement (%)	23.8		
Moisture Content Top 30mm (%)	25.0		
Moisture Content Rest of Sample (%)	25.6		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	123.8		
Swell (%)	0.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size Distribution (AS1289 3.6.1)						
Sieve	Passed %	Passir Limits	ıg	Retained %	Retain Limits	ed
26.5 mm	100			0		
19 mm	100			0		
13.2 mm	99			1		
9.5 mm	98			1		
6.7 mm	94			3		
4.75 mm	90			4		
2.36 mm	80			10		
1.18 mm	71			9		
0.6 mm	63			8		
0.425 mm	60			3		
0.3 mm	57			3		
0.15 mm	51			6		
0.075 mm	46			5		

Report Number: P22253-5A

Issue Number: 3 - This version supersedes all previous issues

Description Amended Reissue Reason:

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: **David Taylor Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3316 Sample Number: P22-3316H Client Sample #: Ε

Date Sampled: 15/09/2022 Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling AS 1289.1.1 - Sampling and preparation of soils **Preparation Method:**

Site Selection: Selected by Client

Borehole Point E E: 393957.504, N: 6963300.506, Depth: 1.0 - 1.4 Sample Location:

Material: Natural Material Source: Insitu

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	44		
Plastic Limit (%)	22		
Plasticity Index (%) 22			

Linear Shrinkage (AS1289 3.4.1)			Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	7.0		
Cracking Crumbling Curling	Cracking & (Curlina	

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman Technical Services Manager

Report Number: P22253-5A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3316

Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point E

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Technical Services Manager

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Moisture Content A	S 1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
P22-3316A	Borehole Point E Ch: 393957.504m, Off: 6963300.506m, Depth: 0.2 - 0.4	19.2 %	Natural
P22-3316B	Borehole Point E Ch: 393957.504m, Off: 6963300.506m, Depth: 1.0 - 1.2	17.6 %	Natural
P22-3316C	Borehole Point E Ch: 393957.504m, Off: 6963300.506m, Depth: 1.5 - 1.7	21.3 %	Natural
P22-3316D	Borehole Point E Ch: 393957.504m, Off: 6963300.506m, Depth: 2.0 - 2.2	25.4 %	Natural
P22-3316E	Borehole Point E Ch: 393957.504m, Off: 6963300.506m, Depth: 2.5 - 2.7	27.9 %	Natural
P22-3316F	Borehole Point E Ch: 393957.504m, Off: 6963300.506m, Depth: 3.0 - 3.2	29.2 %	Natural

Report Number: P22253-5A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3316

 Date Sampled:
 15/09/2022

Dates Tested: 26/09/2022 - 29/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point E

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA

WORLD RECOGNISED

ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

material Source.			
Shrink Swell Index AS 1289 7.1.1 & 2.1	.1		
Sample Number	P22-3316G		
Date Sampled	15/09/2022		
Date Tested	29/09/2022		
Material Source	insitu		
Sample Location	Borehole Point E E: 393957.504, N: 6963300.506 (3.0)		
Inert Material Estimate (%)	20		
Pocket Penetrometer before (kPa)	70		
Pocket Penetrometer after (kPa)	60		
Shrinkage Moisture Content (%)	34.8		
Shrinkage (%)	0.8		
Swell Moisture Content Before (%)	27.4		
Swell Moisture Content After (%)	33.4		
Swell (%)	-0.0		
Shrink Swell Index Iss (%)	0.4		
Visual Description	mottled light brown and red brown silty clay, trace of fine weathered gravel		
Cracking	MC		
Crumbling	Yes		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

 $Cracking\ Terminology:\ UC\ Uncracked,\ SC\ Slightly\ Cracked,\ MC\ Moderately\ Cracked,\ HC\ Highly\ Cracked,\ FR\ Fragmented.$

Report Number: P22253-6A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3317

 Sample Number:
 P22-3317F

 Client Sample #:
 F

 Date Sampled:
 14/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point F E: 393930.431, N: 6963554.758, Depth: 1.0 - 1.4

Material: Natural
Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

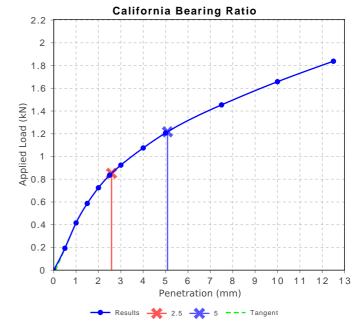
Phone: (07) 4633 0816

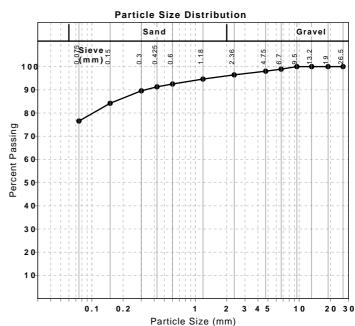
Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman


Technical Services Manager


NATA Accredited Laboratory Number: 19673

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	6		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.47		
Optimum Moisture Content (%)	31.0		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	100.0		
Dry Density after Soaking (t/m ³)	1.41		
Field Moisture Content (%)	30.9		
Moisture Content at Placement (%)	31.0		
Moisture Content Top 30mm (%)	35.7		
Moisture Content Rest of Sample (%)	33.2		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	124.9		
Swell (%)	1.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size Distribution (AS1289 3.6.1)						
Sieve	Passed %	Passir Limits	ıg	Retained %	Retain Limits	ed
26.5 mm	100			0		
19 mm	100			0		
13.2 mm	100			0		
9.5 mm	100			0		
6.7 mm	99			1		
4.75 mm	98			1		
2.36 mm	96			2		
1.18 mm	95			2		
0.6 mm	93			2		
0.425 mm	91			1		
0.3 mm	90			2		
0.15 mm	84			5		
0.075 mm	77			8		

Report Number: P22253-6A

Report Number: P22253-6A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3317
Sample Number: P22-3317F
Client Sample #: F

Date Sampled: 14/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point F E: 393930.431, N: 6963554.758, Depth: 1.0 - 1.4

Material: Natural Material Source: Insitu

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	76		
Plastic Limit (%)	41		
Plasticity Index (%)	35		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	10.0		
Cracking Crumbling Curling	None		

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Technical Services Manager

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Report Number: P22253-6A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3317

Date Sampled: 14/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point F

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Moisture Content A	S 1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
P22-3317A	Borehole Point F Ch: 393930.431m, Off: 6963554.758m, Depth: 0.2 - 0.4	31.8 %	Natural
P22-3317B	Borehole Point F Ch: 393930.431m, Off: 6963554.758m, Depth: 1.0 - 1.2	30.1 %	Natural
P22-3317C	Borehole Point F Ch: 393930.431m, Off: 6963554.758m, Depth: 2.0 - 2.2	31.7 %	Natural
P22-3317D	Borehole Point F Ch: 393930.431m, Off: 6963554.758m, Depth: 3.0 - 3.2	31.1 %	Natural

Report Number: P22253-6A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: **David Taylor Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3317 Date Sampled: 14/09/2022

Dates Tested: 26/09/2022 - 01/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point F

Material: Natural **Material Source:** Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman

Technical Services Manager NATA Accredited Laboratory Number: 19673

Shrink Swell Index AS 1289 7.1.1 & 2.1	.1		
Sample Number	P22-3317E		
Date Sampled	14/09/2022		
Date Tested	01/10/2022		
Material Source	insitu		
Sample Location	Borehole Point F E: 393930.431, N: 6963554.758 (2.5)		
Inert Material Estimate (%)	10		
Pocket Penetrometer before (kPa)	50		
Pocket Penetrometer after (kPa)	50		
Shrinkage Moisture Content (%)	32.1		
Shrinkage (%)	2.8		
Swell Moisture Content Before (%)	30.9		
Swell Moisture Content After (%)	34.2		
Swell (%)	0.0		
Shrink Swell Index Iss (%)	1.6		
Visual Description	mottled grey and red/brown silty clay		
Cracking	SC		
Crumbling	No		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Report Number: P22253-7A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: P22253

Project Number: Project Name:

248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3318 Sample Number: P22-3318F Client Sample #: G Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point G E: 393547.716, N: 6963357.027, Depth: 1.0 - 1.4

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

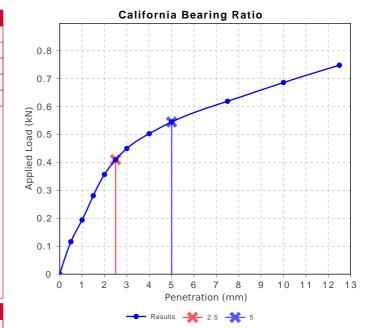
Email: mark@qcts.net.au

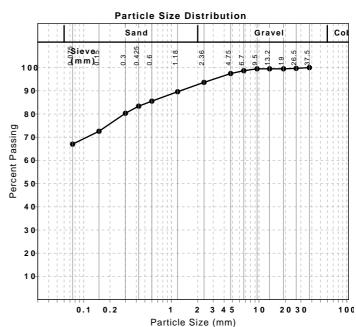
Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman **Technical Services Manager**

NATA Accredited Laboratory Number: 19673

NATA
WORLD RECOGNISED ACCREDITATION


waterial: Material Source:	Insitu			
California Bearing Rat	io (AS 1289 6.1.1 & :	2.1.1)	Min	Max


California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	3.0		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	1.1 &	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.43		
Optimum Moisture Content (%)	31.5		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	100.0		
Moisture Content at Placement (%)	31.3		
Moisture Content Top 30mm (%)	44.2		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	126.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size Distribution (AS1289 3.6.1)						
Sieve	Passed %	Passir Limits	g Retained %		Retained Limits	
37.5 mm	100			0		
26.5 mm	100			0		
19 mm	99			0		
13.2 mm	99			0		
9.5 mm	99			0		
6.7 mm	99			1		
4.75 mm	97			1		
2.36 mm	94			4		
1.18 mm	90			4		
0.6 mm	86			4		
0.425 mm	83			2		
0.3 mm	80			3		
0.15 mm	73			8		
0.075 mm	67			6		

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History Oven Dried			
Preparation Method Dry Sieve			
Liquid Limit (%)	80		
Plastic Limit (%)	31		
Plasticity Index (%)	49		

Report Number: P22253-7A

Report Number: P22253-7A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3318
Sample Number: P22-3318F
Client Sample #: G

 Date Sampled:
 15/09/2022

 Dates Tested:
 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point G E: 393547.716, N: 6963357.027, Depth: 1.0 - 1.4

Material: Natural Material Source: Insitu

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	21.0		
Cracking Crumbling Curling	Cracking & Curling		

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Report Number: P22253-7A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3318

Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point G

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Technical Services Manager

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Moisture Content A	S 1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
P22-3318A	Borehole Point G Ch: 393547.716m, Off: 6963357.027m, Depth: 0.2 - 0.4	26.8 %	Natural
P22-3318B	Borehole Point G Ch: 393547.716m, Off: 6963357.027m, Depth: 1.0 - 1.2	31.6 %	Natural
P22-3318C	Borehole Point G Ch: 393547.716m, Off: 6963357.027m, Depth: 2.0 - 2.2	28.3 %	Natural
P22-3318D	Borehole Point G Ch: 393547.716m, Off: 6963357.027m, Depth: 3.0 - 3.2	32.0 %	Natural

Report Number: P22253-7A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor
Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3318

 Date Sampled:
 15/09/2022

Dates Tested: 26/09/2022 - 01/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point G

Material: Natural
Material Source: Insitu

Report Number: P22253-7A

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

material Source: Insitu		 	
Shrink Swell Index AS 1289 7.1.1 & 2.1.	1		
Sample Number	P22-3318E		
Date Sampled	15/09/2022		
Date Tested	01/10/2022		
Material Source	insitu		
Sample Location	Borehole Point G E: 393547.716, N: 6963357.027 (2.0)		
Inert Material Estimate (%)	15		
Pocket Penetrometer before (kPa)	50		
Pocket Penetrometer after (kPa)	30		
Shrinkage Moisture Content (%)	33.5		
Shrinkage (%)	3.6		
Swell Moisture Content Before (%)	33.5		
Swell Moisture Content After (%)	37.6		
Swell (%)	0.5		
Shrink Swell Index Iss (%)	2.1		
Visual Description	grey/brown silty clay and weathered gravel		
Cracking	MC		
Crumbling	Yes		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Report Number: P22253-8

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: **Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3319 Sample Number: P22-3319E Client Sample #: Н

Date Sampled: 15/09/2022 Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point H E: 393533.603, N: 6963555.247, Depth: 1.0 - 1.4

Material: Natural **Material Source:** Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

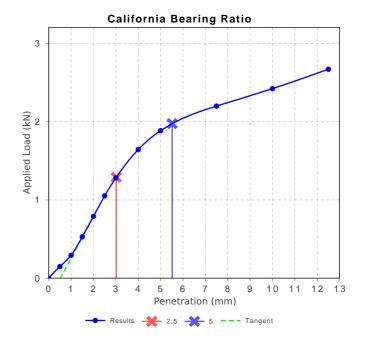
4 Stradbroke Street Rockville QLD 4350

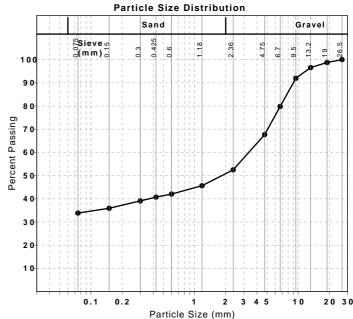
Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman


Technical Services Manager


NATA Accredited Laboratory Number: 19673

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	5 mm		
CBR %	10		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.72		
Optimum Moisture Content (%)	20.5		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	99.5		
Dry Density after Soaking (t/m³)	1.65		
Field Moisture Content (%)	19.0		
Moisture Content at Placement (%)	20.2		
Moisture Content Top 30mm (%)	26.9		
Moisture Content Rest of Sample (%)	23.8		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	168.3		
Swell (%)	1.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	1		

Particle Size	Distribution (A	S1289 3	3.6.1)			
Sieve	Passed %	Passing Reta Limits		Retained %	Retained Limits	
26.5 mm	100			0		
19 mm	99			1		
13.2 mm	97			2		
9.5 mm	92			5		
6.7 mm	80			12		
4.75 mm	68			12		
2.36 mm	52			15		
1.18 mm	46			7		
0.6 mm	42			4		
0.425 mm	41			1		
0.3 mm	39			2		
0.15 mm	36			3		
0.075 mm	34			2		

Report Number: P22253-8

Report Number: P22253-8

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3319

 Sample Number:
 P22-3319E

 Client Sample #:
 H

Date Sampled: 15/09/2022 **Dates Tested:** 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point H E: 393533.603, N: 6963555.247, Depth: 1.0 - 1.4

Material: Natural Material Source: Insitu

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History Oven Dried			
Preparation Method	I Dry Sieve		
Liquid Limit (%)	55		
Plastic Limit (%)	22		
Plasticity Index (%)			

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	13.0		
Cracking Crumbling Curling	Curling		

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Report Number: P22253-8

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3319

Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point H

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA

WORLD RECOGNISED

ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Moisture Content A	S 1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
P22-3319A	Borehole Point H Ch: 393533.663m, Off: 6963555.247m, Depth: 0.2 - 0.4	36.2 %	Natural
P22-3319B	Borehole Point H Ch: 393533.663m, Off: 6963555.247m, Depth: 1.0 - 1.2	22.6 %	Natural
P22-3319C	Borehole Point H Ch: 393533.663m, Off: 6963555.247m, Depth: 2.0 - 2.2	21.1 %	Natural
P22-3319D	Borehole Point H Ch: 393533.663m, Off: 6963555.247m, Depth: 3.0 - 3.2	9.2 %	Natural

Report Number: P22253-9A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact:

Project Number: P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3320 Sample Number: P22-3320F Client Sample #:

Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Borehole Point I E: 393566.247, N: 6963709.101, Depth: 0.2 - 0.6 Sample Location:

Material: **Material Source:** Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

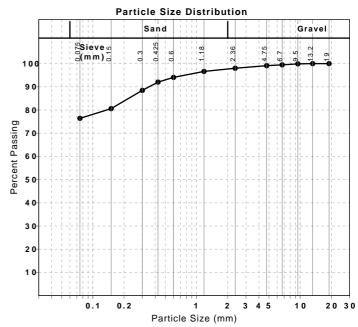
4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Approved Signatory: Mark Jackman

Technical Services Manager


NATA Accredited Laboratory Number: 19673

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	2.0		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.39		
Optimum Moisture Content (%)	34.0		
Laboratory Density Ratio (%)	96.5		
Laboratory Moisture Ratio (%)	100.0		
Dry Density after Soaking (t/m ³)	1.31		
Field Moisture Content (%)	35.7		
Moisture Content at Placement (%)	34.0		
Moisture Content Top 30mm (%)	44.6		
Moisture Content Rest of Sample (%)	37.4		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	171.8		
Swell (%)	2.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size Distribution (AS1289 3.6.1)							
Sieve	Passed %	Passing Limits		Retained %	Retain Limits	ed	
19 mm	100			0			
13.2 mm	100			0			
9.5 mm	100			0			
6.7 mm	99			0			
4.75 mm	99			0			
2.36 mm	98			1			
1.18 mm	97			1			
0.6 mm	94			3			
0.425 mm	92			2			
0.3 mm	88			4			
0.15 mm	81			8			
0.075 mm	76			4			

Report Number: P22253-9A

Report Number: P22253-9A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3320 Sample Number: P22-3320F

Client Sample #:

Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point I E: 393566.247, N: 6963709.101, Depth: 0.2 - 0.6

Material: Natural Material Source: Insitu

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History Oven Dried			
Preparation Method	Dry Sieve		
Liquid Limit (%)	73		
Plastic Limit (%)	25		
Plasticity Index (%) 48			

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	18.5		
Cracking Crumbling Curling	Curling		

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager NATA Accredited Laboratory Number: 19673

Report Number: P22253-9A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: **David Taylor Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Insitu

Work Request: 3320 Date Sampled: 19/09/2022

Material Source:

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point I Material: Natural

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager NATA Accredited Laboratory Number: 19673

Moisture Content A	Moisture Content AS 1289 2.1.1						
Sample Number	Sample Location	Moisture Content	Material				
P22-3320A	Borehole Point I Ch: 393566.247m, Off: 6963709.101m, Depth: 0.2 - 0.4	40.6 %	Natural				
P22-3320B	Borehole Point I Ch: 393566.247m, Off: 6963709.101m, Depth: 1.0 - 1.2	31.2 %	Natural				
P22-3320C	Borehole Point I Ch: 393566.247m, Off: 6963709.101m, Depth: 2.0 - 2.2	29.4 %	Natural				
P22-3320D	Borehole Point I Ch: 393566.247m, Off: 6963709.101m, Depth: 3.0 - 3.2	28.9 %	Natural				

Report Number: P22253-9A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor

Project Number: P22253
Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3320

 Date Sampled:
 19/09/2022

Material Source:

Dates Tested: 26/09/2022 - 04/10/2022

Insitu

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point I Material: Natural

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

Shrink Swell Index AS 1289 7.1.1 & 2.1	.1		
Sample Number	P22-3320E		
Date Sampled	19/09/2022		
Date Tested	04/10/2022		
Material Source	insitu		
Sample Location	Borehole Point I E: 393566.247, N: 6963709.101 (1.0)		
Inert Material Estimate (%)	50		
Pocket Penetrometer before (kPa)	60		
Pocket Penetrometer after (kPa)	50		
Shrinkage Moisture Content (%)	35.0		
Shrinkage (%)	3.7		
Swell Moisture Content Before (%)	36.1		
Swell Moisture Content After (%)	39.8		
Swell (%)	-0.1		
Shrink Swell Index Iss (%)	2.1		
Visual Description	brown weathered gravel and silty clay		
Cracking	HC		
Crumbling	Yes		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

 $Cracking\ Terminology:\ UC\ Uncracked,\ SC\ Slightly\ Cracked,\ MC\ Moderately\ Cracked,\ HC\ Highly\ Cracked,\ FR\ Fragmented.$

Report Number: P22253-10A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact:

Project Number: P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3321 Sample Number: P22-3321F Client Sample #: Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point J E: 393584.853, N: 6963836.434, Depth: 0.2 - 0.6

Material: **Material Source:** Insitu

Quality Control Testing Services Pty Ltd

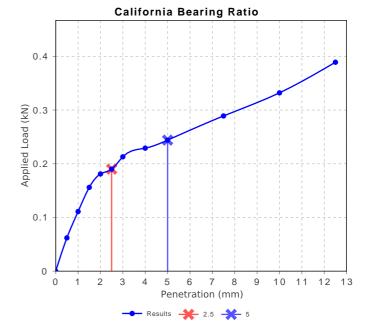
QCTS Toowoomba

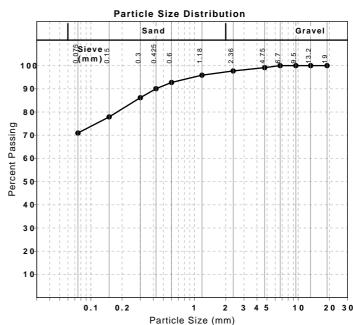
4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Technical Services Manager


NATA Accredited Laboratory Number: 19673


	STATE OF THE PARTY
NATA	
WORLD RECOGNISED	

California Bearing Ratio (AS 1289 6.1.1 & :	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	1.5		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.42		
Optimum Moisture Content (%)	31.5		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	100.0		
Dry Density after Soaking (t/m ³)	1.34		
Field Moisture Content (%)	35.1		
Moisture Content at Placement (%)	31.3		
Moisture Content Top 30mm (%)	44.0		
Moisture Content Rest of Sample (%)	33.4		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	147.8		
Swell (%)	3.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size	Distribution (A	S1289 3	3.6.1)			
Sieve	Passed %	Passin Limits	ıg	Retained %	Retain Limits	ed
19 mm	100			0		
13.2 mm	100			0		
9.5 mm	100			0		
6.7 mm	100			0		
4.75 mm	99			1		
2.36 mm	98			1		
1.18 mm	96			2		
0.6 mm	93			3		
0.425 mm	90			3		
0.3 mm	86			4		
0.15 mm	78			8		
0.075 mm	71			7		

Report Number: P22253-10A

Report Number: P22253-10A

Issue Number: 3 - This version supersedes all previous issues

Description Amended Reissue Reason:

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: **David Taylor Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3321 Sample Number: P22-3321F Client Sample #:

Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling AS 1289.1.1 - Sampling and preparation of soils **Preparation Method:**

Site Selection: Selected by Client

Sample Location: Borehole Point J E: 393584.853, N: 6963836.434, Depth: 0.2 - 0.6

Material: Natural Material Source: Insitu

Atterberg Limit (AS1289 3.1.2 & 3.2	Min	Max	
Sample History	mple History Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	73		
Plastic Limit (%)	25		
Plasticity Index (%)			

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	18.0		
Cracking Crumbling Curling	Curlina		

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Technical Services Manager

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman

Report Number: P22253-10A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3321

Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point J

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Moisture Content A	S 1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
P22-3321A	Borehole Point J Ch: 393584.853m, Off: 6963836.434m, Depth: 0.2 - 0.4	38.2 %	Natural
P22-3321B	Borehole Point J Ch: 393584.853m, Off: 6963836.434m, Depth: 1.0 - 1.2	32.0 %	Natural
P22-3321C	Borehole Point J Ch: 393584.853m, Off: 6963836.434m, Depth: 2.0 - 2.2	21.2 %	Natural
P22-3321D	Borehole Point J Ch: 393584.853m, Off: 6963836.434m, Depth: 3.0 - 3.2	21.0 %	Natural

Report Number: P22253-10A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: P22253

Project Number: **Project Name:** 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3321 Date Sampled: 19/09/2022

Dates Tested: 26/09/2022 - 04/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Borehole Point J Location:

Material: Natural **Material Source:** Insitu

Report Number: P22253-10A

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

Shrink Swell Index AS 1289 7.1.1 & 2.1.	1		
Sample Number	P22-3321E		
Date Sampled	19/09/2022		
Date Tested	04/10/2022		
Material Source	insitu		
Sample Location	Borehole Point J E: 393584.853, N: 6963836.434 (1.0)		
Inert Material Estimate (%)	15		
Pocket Penetrometer before (kPa)	40		
Pocket Penetrometer after (kPa)	20		
Shrinkage Moisture Content (%)	35.5		
Shrinkage (%)	4.0		
Swell Moisture Content Before (%)	36.2		
Swell Moisture Content After (%)	39.2		
Swell (%)	0.3		
Shrink Swell Index Iss (%)	2.3		
Visual Description	mottled grey/brown and red/brown weathered gravelly clay		
Cracking	MC		
Crumbling	Yes		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Report Number: P22253-11A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: **Project Number:** P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3322 Sample Number: P22-3322C Client Sample #: Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling AS 1289.1.1 - Sampling and preparation of soils **Preparation Method:**

Site Selection: Selected by Client

Sample Location: Borehole Point K E: 393700.920, N: 6964253.395, Depth: 0.2 - 0.6

Material: **Material Source:** Insitu

Quality Control Testing Services Pty Ltd

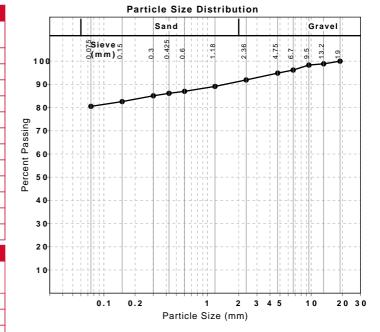
QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION


Approved Signatory: Mark Jackman

Technical Services Manager

Particle Size	Distribution (A	S1289 3	3.6.1)			
Sieve	Passed %	Passing Limits		Retained %	Retain Limits	ed
19 mm	100			0		
13.2 mm	99			1		
9.5 mm	98			1		
6.7 mm	96			2		
4.75 mm	95			1		
2.36 mm	92			3		
1.18 mm	89			3		
0.6 mm	87			2		
0.425 mm	86			1		
0.3 mm	85			1		
0.15 mm	83			3		
0.075 mm	81			2		

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	70		
Plastic Limit (%)	26		
Plasticity Index (%)	44		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	17.0		
Cracking Crumbling Curling	Cracking & Curling		

Report Number: P22253-11A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor
Project Number: P22253

Project Number: P22253
Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3322

Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point K

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager
A Accredited Laboratory Number: 19673

	Appr
WORLD RECOGNISED ACCREDITATION	
	NATA

Moisture Content A	S 1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
P22-3322A	Borehole Point K E: 393700.920, N: 6964253.395, Depth: 0.2 - 0.4	36.4 %	Natural

Report Number: P22253-11A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor

Project Number: P22253 **Project Name:**

248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3322 Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 04/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point K

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

Shrink Swell Index AS 1289 7.1.1 & 2.1	4		
Sample Number	P22-3322B		
Date Sampled	15/09/2022		
Date Tested	04/10/2022		
Material Source	insitu		
Sample Location	Borehole Point K E: 393700.920, N: 6964253.395 (1.0)		
Inert Material Estimate (%)	50		
Pocket Penetrometer before (kPa)	30		
Pocket Penetrometer after (kPa)	30		
Shrinkage Moisture Content (%)	24.2		
Shrinkage (%)	2.8		
Swell Moisture Content Before (%)	20.2		
Swell Moisture Content After (%)	22.9		
Swell (%)	-0.2		
Shrink Swell Index Iss (%)	1.6		
Visual Description	weathered gravel and red brown silty clay		
Cracking	FR		
Crumbling	Yes		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Report Number: P22253-12A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: **Project Number:** P22253

Project Name: 248 Woolmer Road Development Browne & Woolmer Rd, Highfields

Project Location: Work Request: 3323 Sample Number: P22-3323F

Client Sample #:

Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling AS 1289.1.1 - Sampling and preparation of soils **Preparation Method:**

Site Selection: Selected by Client

Sample Location: Borehole Point L E: 393843.436, N: 6964105.834, Depth: 2.0 - 2.4

Material: **Material Source:** Insitu

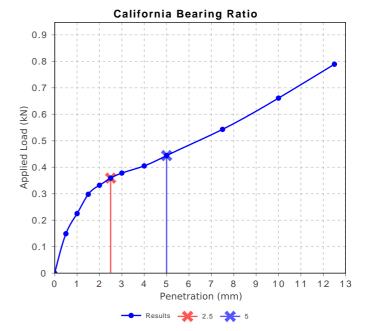
Quality Control Testing Services Pty Ltd

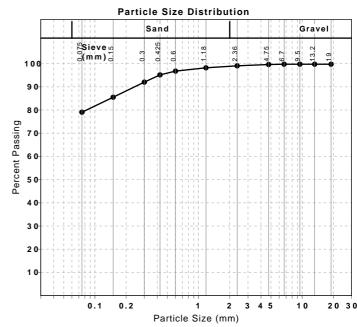
QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au




Approved Signatory: Mark Jackman

Technical Services Manager

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	2.5		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.41		
Optimum Moisture Content (%)	32.5		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	100.0		
Dry Density after Soaking (t/m ³)	1.34		
Field Moisture Content (%)	35.5		
Moisture Content at Placement (%)	32.4		
Moisture Content Top 30mm (%)	41.9		
Moisture Content Rest of Sample (%)	34.0		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	148.9		
Swell (%)	2.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size	Distribution (AS	S1289 3	3.6.1)			
Sieve	Passed %			Retain Limits	ed	
19 mm	100			0		
13.2 mm	100			0		
9.5 mm	100			0		
6.7 mm	100			0		
4.75 mm	100			0		
2.36 mm	99			1		
1.18 mm	98			1		
0.6 mm	97			1		
0.425 mm	95			2		
0.3 mm	92			3		
0.15 mm	86			7		
0.075 mm	79			6		

Report Number: P22253-12A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3323

 Sample Number:
 P22-3323F

 Client Sample #:
 L

Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point L E: 393843.436, N: 6964105.834, Depth: 2.0 - 2.4

Material: Natural Material Source: Insitu

Report Number: P22253-12A

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	77		
Plastic Limit (%)	25		
Plasticity Index (%)	52		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	18.5		
Cracking Crumbling Curling	Curling	n	

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager NATA Accredited Laboratory Number: 19673

Report Number: P22253-12A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3323

Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point L

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA

WORLD RECOGNISED

ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Moisture Content A	S 1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
P22-3323A	Borehole Point L Ch: 393843.436m, Off: 6964105.834m, Depth: 0.2 - 0.4	34.9 %	Natural
P22-3323B	Borehole Point L Ch: 393843.436m, Off: 6964105.834m, Depth: 1.0 - 1.2	35.9 %	Natural
P22-3323C	Borehole Point L Ch: 393843.436m, Off: 6964105.834m, Depth: 2.0 - 2.2	35.8 %	Natural
P22-3323D	Borehole Point L Ch: 393843.436m, Off: 6964105.834m, Depth: 3.0 - 3.2	35.2 %	Natural

Report Number: P22253-12A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor

Project Number: P22253 **Project Name:** 248 Woolmer Road Development

Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3323 Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 05/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Borehole Point L

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

Shrink Swell Index AS 1289 7.1.1 & 2.1	1		
Sample Number	P22-3323E		
Date Sampled	15/09/2022		
Date Tested	05/10/2022		
Material Source	insitu		
Sample Location	Borehole Point L E: 393843.436, N: 6964105.834 (2.0)		
Inert Material Estimate (%)	15		
Pocket Penetrometer before (kPa)	50		
Pocket Penetrometer after (kPa)	30		
Shrinkage Moisture Content (%)	38.4		
Shrinkage (%)	2.3		
Swell Moisture Content Before (%)	39.9		
Swell Moisture Content After (%)	43.0		
Swell (%)	-0.2		
Shrink Swell Index Iss (%)	1.3		
Visual Description	grey brown weathered gravel and brown Silty clay		
Cracking	SC		
Crumbling	Yes		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Report Number: P22253-13A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

David Taylor Contact: P22253

Project Number: Project Name:

248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3324 Sample Number: P22-3324F Client Sample #: Μ Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling **Preparation Method:** AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point M E: 393838.626, N: 6963606.323, Depth: 1.0 - 1.4

Material: Natural **Material Source:** Insitu

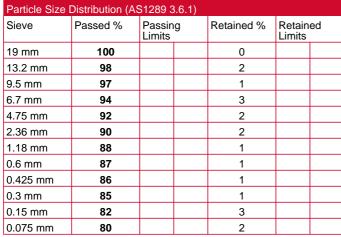
Quality Control Testing Services Pty Ltd

QCTS Toowoomba

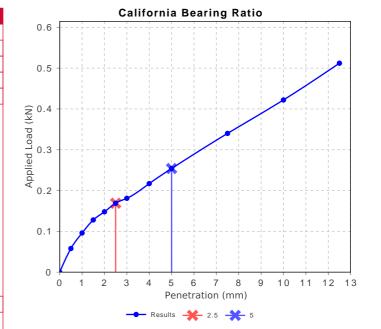
4 Stradbroke Street Rockville QLD 4350

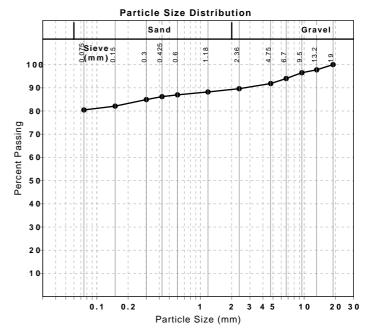
Phone: (07) 4633 0816

Email: mark@qcts.net.au


Accredited for compliance with ISO/IEC 17025 - Testing Approved Signatory: Mark Jackman

Technical Services Manager


NATA Accredited Laboratory Number: 19673


NATA
WORLD RECOGNISED ACCREDITATION

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	5 mm		
CBR %	1.5		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	Visı	ually	
Maximum Dry Density (t/m ³)	1.43		
Optimum Moisture Content (%)	31.5		
Laboratory Density Ratio (%)	97.0		
Laboratory Moisture Ratio (%)	100.0		
Dry Density after Soaking (t/m ³)	1.31		
Field Moisture Content (%)	30.6		
Moisture Content at Placement (%)	31.4		
Moisture Content Top 30mm (%)	42.3		
Moisture Content Rest of Sample (%)	35.8		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	173.4		
Swell (%)	5.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Report Number: P22253-13A

Report Number: P22253-13A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

 Work Request:
 3324

 Sample Number:
 P22-3324F

 Client Sample #:
 M

 Date Sampled:
 15/09/2022

Dates Tested: 26/09/2022 - 11/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client

Sample Location: Borehole Point M E: 393838.626, N: 6963606.323, Depth: 1.0 - 1.4

Material: Natural Material Source: Insitu

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Sample History Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	96		
Plastic Limit (%)	32		
Plasticity Index (%)	64		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	16.0		
Cracking Crumbling Curling	Curling	1	

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Report Number: P22253-13A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor Project Number: P22253

Project Name: 248 Woolmer Road Development
Project Location: Browne & Woolmer Rd, Highfields

Work Request: 3324

Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 28/09/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Location: Selected by Client M

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

NATA

WORLD RECOGNISED

ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Mark Jackman

Technical Services Manager

Moisture Content A	S 1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
P22-3324A	Borehole Point M Ch: 393838.626m, Off: 6963606.323m, Depth: 0.2 - 0.4	24.7 %	Natural
P22-3324B	Borehole Point M Ch: 393838.626m, Off: 6963606.323m, Depth: 1.0 - 1.2	32.3 %	Natural
P22-3324C	Borehole Point M Ch: 393838.626m, Off: 6963606.323m, Depth: 2.0 - 2.2	30.3 %	Natural
P22-3324D	Borehole Point M Ch: 393838.626m, Off: 6963606.323m, Depth: 3.0 - 3.2	30.1 %	Natural

Report Number: P22253-13A

Issue Number: 3 - This version supersedes all previous issues

Reissue Reason: Description Amended

Date Issued: 30/01/2023

Client: Geneng Solutions Pty Ltd

PO Box 300, Crows Nest QLD 4355

Contact: David Taylor

Project Number: P22253

Project Name: 248 Woolmer Road Development **Project Location:** Browne & Woolmer Rd, Highfields

Work Request: 3324 Date Sampled: 15/09/2022

Dates Tested: 26/09/2022 - 06/10/2022

Sampling Method: AS 1289.1.2.1 6.5.3 - Power auger drilling Preparation Method: AS 1289.1.1 - Sampling and preparation of soils

Site Selection: Selected by Client Borehole Point M Location:

Material: Natural Material Source: Insitu

Quality Control Testing Services Pty Ltd

QCTS Toowoomba

4 Stradbroke Street Rockville QLD 4350

Phone: (07) 4633 0816

Email: mark@qcts.net.au

Accredited for compliance with ISO/IEC 17025 - Testing **NATA** WORLD RECOGNISED
ACCREDITATION

Approved Signatory: Mark Jackman

Technical Services Manager

NATA Accredited Laboratory Number: 19673

Shrink Swell Index AS 1289 7.1.1 & 2.1.	1		
Sample Number	P22-3324E		
Date Sampled	15/09/2022		
Date Tested	06/10/2022		
Material Source	insitu		
Sample Location	Borehole Point M E: 393838.626, N: 6963606.323 (2.0)		
Inert Material Estimate (%)	10		
Pocket Penetrometer before (kPa)	55		
Pocket Penetrometer after (kPa)	40		
Shrinkage Moisture Content (%)	37.1		
Shrinkage (%)	2.7		
Swell Moisture Content Before (%)	37.6		
Swell Moisture Content After (%)	43.2		
Swell (%)	3.5		
Shrink Swell Index Iss (%)	2.5		
Visual Description	weathered gravel and grey silty clay		
Cracking	SC		
Crumbling	No		
Remarks	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18

replaces
Information
Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- · Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

GENERAL DEFINITIONS OF SITE CLASSES				
Class	Foundation			
A	Most sand and rock sites with little or no ground movement from moisture changes			
S	Slightly reactive clay sites with only slight ground movement from moisture changes			
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes			
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes			
E	Extremely reactive sites, which can experience extreme ground movement from moisture changes			
A to P	Filled sites			
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise			

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- · Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

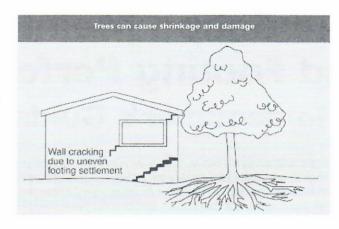
Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).


Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

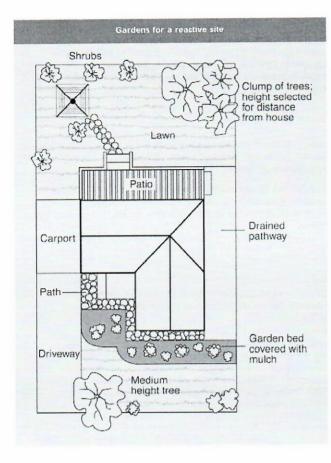
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category
Hairline cracks	<0.1 mm	0
Fine cracks which do not need repair	<1 mm	1
Cracks noticeable but easily filled. Doors and windows stick slightly	<5 mm	2
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired	5–15 mm (or a number of cracks 3 mm or more in one group)	3
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted	15–25 mm but also depend on number of cracks	4

should extend outwards a minimum of 900~mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100~mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

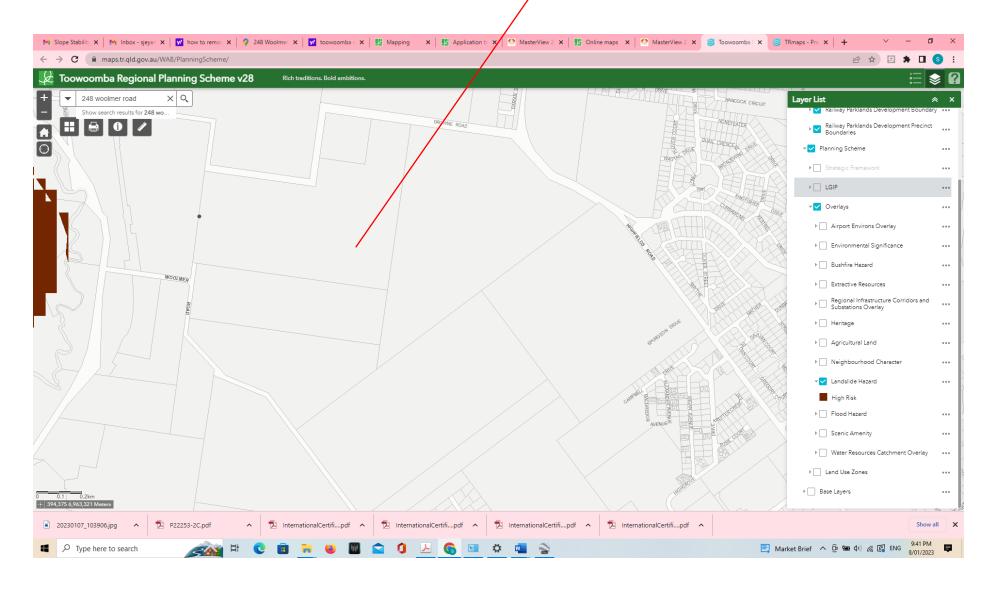
Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.


Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia

Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited

Subject Site

